
The Set Library
0.2.1

Generated by Doxygen 1.7.6.1

Tue Apr 23 2013 22:32:03

Contents

1 C Data Structure Library: Set Library 1

1.1 Introduction . 1

1.2 How to Use The Library . 1

1.3 Boilerplate Code . 2

1.4 Future Directions . 3

1.4.1 Storing Hash Numbers . 4

1.4.2 Improvement on Set Operations 4

1.5 Contact Me . 4

1.6 Copyright . 4

2 Todo List 7

3 File Index 9

3.1 File List . 9

4 File Documentation 11

4.1 set.c File Reference . 11

4.1.1 Detailed Description . 12

4.1.2 Function Documentation . 12

4.1.2.1 set_diff . 12

4.1.2.2 set_free . 12

4.1.2.3 set_inter . 13

4.1.2.4 set_length . 13

4.1.2.5 set_map . 14

4.1.2.6 set_member . 14

4.1.2.7 set_minus . 15

ii CONTENTS

4.1.2.8 set_new . 15

4.1.2.9 set_put . 16

4.1.2.10 set_remove . 17

4.1.2.11 set_toarray . 18

4.1.2.12 set_union . 18

4.2 set.h File Reference . 19

4.2.1 Detailed Description . 20

4.2.2 Function Documentation . 20

4.2.2.1 set_diff . 20

4.2.2.2 set_free . 21

4.2.2.3 set_inter . 21

4.2.2.4 set_length . 22

4.2.2.5 set_member . 22

4.2.2.6 set_minus . 22

4.2.2.7 set_put . 23

4.2.2.8 set_remove . 24

4.2.2.9 set_toarray . 24

4.2.2.10 set_union . 25

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

Chapter 1

C Data Structure Library: Set Library

Version

0.2.1

Author

Jun Woong (woong.jun at gmail.com)

Date

last modified on 2013-04-23

1.1 Introduction

This document specifies the Set Library which belongs to the C Data Structure Library.
The basic structure is from David Hanson’s book, "C Interfaces and Implementations."
I modifies the original implementation to make it more appropriate for my other projects
and to enhance its readibility; for example a prefix is used more strictly in order to avoid
the user namespace pollution.

Since the book explains its design and implementation in a very comprehensive way,
not to mention the copyright issues, it is nothing but waste to repeat it here, so I finish
this document by giving introduction to the library; how to use the facilities is deeply
explained in files that define them.

The Set Library reserves identifiers starting with set_ and SET_, and imports the
Assertion Library (which requires the Exception Handling Library) and the Memory -
Management Library.

1.2 How to Use The Library

The Set Library implements sets whose concept does not differ from that in mathemat-
ics. You can also regard it as a table where values do not have associated keys and

2 C Data Structure Library: Set Library

act as keys by themselves. Since a value in a set is also a key, two instances of the
same value refer to the same element in the set. The storage used to maintain a set
itself is managed by the library, but any storage allocated for data stored in sets should
be managed by a user program.

Similarly for other data structure libraries, use of the Set Library follows this sequence:
create, use and destroy. Except for functions to inspect sets, all other functions do one
of them in various ways.

set_new() that creates an empty set takes three unusual arguments. The first one is
a hint for the expected length of the set it will create, and the other two are to specify
user-defined functions that perform creation and comparison of hash values to represent
members. Some important conditions that those functions have to satisfy are described
in set_new().

In general, a null pointer given to an argument expecting a set is considered an error
which results in an assertion failure, but the functions for set operations (set_union(),
set_inter(), set_minus() and set_diff()) take a null pointer as a valid argument and treat
it as representing an empty set. Also note that they always produce a distinct set; none
of them alters the original set.

1.3 Boilerplate Code

Using a set starts with creating one using set_new(). As explained in the function, it is
important to provide three arguments properly. If members to a set are generated by
the Hash Library, the second and third arguments can be granted null pointers, which
lets internal default functions used for the set. There are other ways to create sets from
an existing set with set_union(), set_inter(), set_minus() and set_diff() (getting a union,
intersection, difference, symmetric difference of sets, respectively); since this library
does not define the concept of a universe, no support for a complement. All set creation
functions allocate storage for a set and if no allocation is possible, an exception is raised
instead of returning a failure indicator like a null pointer.

Once a set created, a member can be added to and removed from a set using set_put()
and set_remove(). Adding a member to a set also entails memory allocation, and thus
an exception can be raised. set_member() inspects if a set contains a specific member,
and set_length() gives the number of members in a set, a.k.a. the length of a set.

There are two ways to apply some operations on every member in a set; set_map()
takes a user-defined function and calls it for each of members, and set_toarray() con-
verts a set into a dynamic arrays. Storage for the generated array is allocated by the
library (thus, an exception is possible again), but a user program is responsible for re-
leasing the storage when the array is no longer necessary.

set_free() takes a set and releases the storage used to maintain it. Note that any storage
allocated by a user program to contain or represent members is not deallocated by the
library.

As an example, the following code creates two sets (whose expected length is set to
20 and members are generated by the Hash Library) and those sets have input char-
acters as members by turns. It then obtains from them a union and an intersection and
enumerates members in the resultsing sets.

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

1.4 Future Directions 3

int c;
char b;
unsigned i = 0;
void **pa, **pb;
set_t *myset1, *myset2, *u, *t;

myset1 = set_new(20, NULL, NULL);
myset2 = set_new(20, NULL, NULL);

while ((c = getchar()) != EOF) {
b = c;
set_put((i++ % 2 == 0)? myset1: myset2, hash_new(&b, 1));

}

u = set_union(myset1, myset2);
t = set_inter(myset1, myset2);

set_free(&myset1);
set_free(&myset2);

pa = set_toarray(u, NULL);
printf("union: ");
for (pb = pa; *pb; pb++)

printf("%c", *(char *)*pb);
MEM_FREE(pa);

pa = set_toarray(t, NULL);
printf("\nintersection: ");
for (pb = pa; *pb; pb++)

printf("%c", *(char *)*pb);
MEM_FREE(pa);

hash_reset();
set_free(&u);
set_free(&t);

where hash_new() and hash_reset() come from the Hash Library, and MEM_NEW()
and MEM_FREE() from the Memory Management Library.

Things to note include:

• it is not a character itself but a hash value for it that is put into a set;

• since all set operations produce a distinct set, it is possible to destroy myset1
and myset2 after their union and intersection have been obtained;

• arrays generated by set_toarray() have to be deallocated by a user code; and

• storages for members in a set should be released by a user code because set_-
free() does not care about them (members are hash values given by hash_new()
in this example, thus hash_reset() is used to release storages for them.)

1.4 Future Directions

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

4 C Data Structure Library: Set Library

1.4.1 Storing Hash Numbers

Modifying the data structure for sets to have hash numbers explicitly makes it possible
for a user-provided hashing function to be called only once for each member in sets and
for a user-provided comparison function to be called only when the hash numbers differ,
which leads to the performance improvement.

1.4.2 Improvement on Set Operations

Set operations like set_union(), set_inter(), set_minus() and set_diff() can be improved
when two sets on which the operations are performed have the same number of buckets
by applying the operations to each pair of corresponding buckets.

1.5 Contact Me

Visit http://code.woong.org to get the lastest version of this library. Only a
small portion of my homepage (http://www.woong.org) is maintained in English,
thus one who is not good at Korean would have difficulty when navigating most of other
pages served in Korean. If you think the information you are looking for is on pages
written in Korean, do not hesitate to send me an email to ask for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and I will reply as soon as possible.

1.6 Copyright

I do not wholly hold the copyright of this library; it is mostly held by David Hanson as
stated in his book, "C: Interfaces and Implementations:"

Copyright (c) 1994,1995,1996,1997 by David R. Hanson.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

For the parts I added or modified, the following applies:

Copyright (C) 2009-2013 by Jun Woong.

This package is a set implementation by Jun Woong. The implementation was written
so as to conform with the Standard C published by ISO 9899:1990 and ISO 9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

http://code.woong.org
http://www.woong.org

1.6 Copyright 5

without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRA-
NTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY -
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTE-
RRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

6 C Data Structure Library: Set Library

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

Chapter 2

Todo List

Global set_diff (set_t ∗, set_t ∗)

Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair of
corresponding buckets when two given sets have the same number of buckets.

Global set_diff (set_t ∗, set_t ∗)

Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair of
corresponding buckets when two given sets have the same number of buckets.

Global set_inter (set_t ∗, set_t ∗)

Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair of
corresponding buckets when two given sets have the same number of buckets.

Global set_inter (set_t ∗, set_t ∗)

Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair of
corresponding buckets when two given sets have the same number of buckets.

Global set_minus (set_t ∗, set_t ∗)

Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair of
corresponding buckets when two given sets have the same number of buckets.

Global set_minus (set_t ∗, set_t ∗)

Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair of
corresponding buckets when two given sets have the same number of buckets.

Global set_union (set_t ∗, set_t ∗)

Improvements are possible and planned:

8 Todo List

• the code can be modified so that the operation is performed on each pair of
corresponding buckets when two given sets have the same number of buckets.

Global set_union (set_t ∗, set_t ∗)

Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair of
corresponding buckets when two given sets have the same number of buckets.

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

set.c
Source for Set Library (CDSL) . 11

set.h
Documentation for Set Library (CDSL) 19

10 File Index

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

Chapter 4

File Documentation

4.1 set.c File Reference

Source for Set Library (CDSL)

#include <limits.h> #include <stddef.h> #include "cbl/memory.-
h" #include "cbl/assert.h" #include "set.h" Include dependency
graph for set.c:

Functions

• set_t ∗() set_new (int hint, int cmp(const void ∗, const void ∗), unsigned
hash(const void ∗))

creates a new set.

• int() set_member (set_t ∗set, const void ∗member)

inspects if a set contains a member.

• void() set_put (set_t ∗set, const void ∗member)

puts a member to a set.

• void ∗() set_remove (set_t ∗set, const void ∗member)

removes a member from a set.

• size_t() set_length (set_t ∗set)

returns the length of a set.

• void() set_free (set_t ∗∗pset)

destroys a set.

• void() set_map (set_t ∗set, void apply(const void ∗member, void ∗cl), void ∗cl)

calls a user-provided function for each member in a set.

• void ∗∗() set_toarray (set_t ∗set, void ∗end)

converts a set to an array.

• set_t ∗() set_union (set_t ∗s, set_t ∗t)

returns a union set of two sets.

• set_t ∗() set_inter (set_t ∗s, set_t ∗t)

12 File Documentation

returns an intersection of two sets.

• set_t ∗() set_minus (set_t ∗s, set_t ∗t)

returns a difference set of two sets

• set_t ∗() set_diff (set_t ∗s, set_t ∗t)

returns a symmetric difference of two sets.

4.1.1 Detailed Description

Source for Set Library (CDSL)

4.1.2 Function Documentation

4.1.2.1 set_t∗() set_diff (set_t ∗ s, set_t ∗ t)

returns a symmetric difference of two sets.

set_diff() returns a symmetric difference of two sets, that is a set with members only one
of two operand sets has. A symmetric difference set is identical to the union set of (s -
t) and (t - s). See set_union() for more detailed explanation commonly applied to the
set operation functions.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of set difference operation
in t operand of set difference operation

Returns

symmetric difference set

Todo Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair
of corresponding buckets when two given sets have the same number of
buckets.

Here is the call graph for this function:

4.1.2.2 void() set_free (set_t ∗∗ pset)

destroys a set.

set_free() destroys a set by deallocating the storage for it and set a given pointer to a
null pointer. As always, set_free() does not deallocate any storage for members in the
set, which must be done by a user.

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

4.1 set.c File Reference 13

Possible exceptions: assert_exceptfail

Unchecked errors: pointer to foreign data structure given for pset

Parameters
in,out pset pointer to set to destroy

Returns

nothing

4.1.2.3 set_t∗() set_inter (set_t ∗ s, set_t ∗ t)

returns an intersection of two sets.

set_inter() returns an intersection of two sets, that is a set with only members that both
have in common. See set_union() for more detailed explanation commonly applied to
the set operation functions.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of set intersection operation
in t operand of set intersection operation

Returns

intersection set

Todo Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair
of corresponding buckets when two given sets have the same number of
buckets.

Here is the call graph for this function:

Here is the caller graph for this function:

4.1.2.4 size t() set_length (set_t ∗ set)

returns the length of a set.

set_length() returns the length of a set which is the number of members in a set.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

14 File Documentation

Parameters
in set set whose length to be returned

Returns

length of set

4.1.2.5 void() set_map (set_t ∗ set, void applyconst void ∗member, void ∗cl, void ∗ cl)

calls a user-provided function for each member in a set.

For each member in a set, set_map() calls a user-provided callback function; it is useful
when doing some common task for each member. The pointer given in cl is passed
to the third parameter of a user callback function, so can be used as a communication
channel between the caller of set_map() and the callback. Differently from table_map(),
set_map() gives a member (which is a pointer value) to apply() rather than a pointer
to a member (which is a pointer to pointer value); compare the type of the member
parameter of apply() to that of the value parameter of apply() in table_map(). This is
very natural since a member plays a role of a hashing key in a set as a key does in a
table. Also note that apply() is not able to modify a member itself but can touch a value
pointed by the member.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Warning

The order in which a user-provided function is called for each member is unspec-
ified; a set is an unordered collection of members, so this is not a limiting factor,
however.

Parameters
in,out set set with which apply called
in apply user-provided function (callback)
in cl passing-by argument to apply

Returns

nothing

4.1.2.6 int() set_member (set_t ∗ set, const void ∗ member)

inspects if a set contains a member.

set_member() inspects a set to see if it contains a member.

Possible exceptions: assert_exceptfail

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

4.1 set.c File Reference 15

Unchecked errors: foreign data structure given for set

Parameters
in set set to inspect
in member member to find in a set

Returns

found/not found indicator

Return values
0 member not found
1 member found

Here is the caller graph for this function:

4.1.2.7 set_t∗() set_minus (set_t ∗ s, set_t ∗ t)

returns a difference set of two sets

set_minus() returns a difference of two sets, that is a set with members that t has but
does not. See set_union() for more detailed explanation commonly applied to the set
operation functions.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of set difference operation
in t operand of set difference operation

Returns

difference set, s - t

Todo Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair
of corresponding buckets when two given sets have the same number of
buckets.

Here is the call graph for this function:

4.1.2.8 set_t∗() set_new (int hint, int cmpconst void ∗, const void ∗, unsigned hashconst
void ∗)

creates a new set.

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

16 File Documentation

set_new() creates a new set. It takes some information on a set it will create:

• hint: an estimate for the size of a set;

• cmp: a user-provided function for comparing members;

• hash: a user-provided function for generating a hash value from a member

set_new() determines the size of the internal hash table kept in a set based on hint.
It never restricts the number of members one can put into a set, but a better estimate
probably gives better performance.

A function given to cmp should be defined to take two arguments and to return a value
less than, equal to or greater than zero to indicate that the first argument is less than,
equal to or greater than the second argument, respectively.

A function given to hash takes a member and returns a hash value that is to be used
as an index for internal hash table in a set. If the cmp function returns zero (which
means they are equal) for some two members, the hash function must generate the
same value for them.

If a null pointer is given for cmp or hash, the default comparison or hashing function
is used; see defhashCmp() and defhashGen(), in which case members are assumed to
be hash strings generated by the Hash Library. An example follows:

set_t *myset = set_new(hint, NULL, NULL);
...
set_put(hash_string("member1"));
set_put(hash_string("member2"));
assert(set_member(hash_string("member1")));

Possible exceptions: mem_exceptfail

Unchecked errors: invalid functions for cmp and hash

Parameters
in hint hint for size of hash table
in cmp user-defined comparison function
in hash user-defined hash generating function

Returns

new set created

Here is the caller graph for this function:

4.1.2.9 void() set_put (set_t ∗ set, const void ∗ member)

puts a member to a set.

set_put() inserts a member to a set. If it fails to find a member matched to a given mem-
ber, it inserts the member to a set after proper storage allocation. If it finds a matched

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

4.1 set.c File Reference 17

one, it replaces an existing member with a new one. Because they has different repre-
sentations even if they compare equal by a user-defined comparison function, replacing
the old one with the new one makes sense.

Note that a member is a pointer. If members are, say, integers in an application, objects
to contain them are necessary to put them into a set.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set set to which member inserted
in member member to insert

Returns

nothing

Here is the caller graph for this function:

4.1.2.10 void∗() set_remove (set_t ∗ set, const void ∗ member)

removes a member from a set.

set_remove() gets rid of a member from a set. Note that set_remove() does not deallo-
cate any storage for the member to remove, which must be done by a user.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set set from whcih member removed
in member member to remove

Returns

previous member or null pointer

Return values
non-null previous member

NULL member not found

Warning

If the stored member is a null pointer, an ambiguous situation may occur.

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

18 File Documentation

4.1.2.11 void∗∗() set_toarray (set_t ∗ set, void ∗ end)

converts a set to an array.

set_toarray() converts members stored in a set to an array. The last element of the
constructed array is assigned by end, which is a null pointer in most cases. Do not
forget deallocate the array when it is unnecessary.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for set

Warning

The size of an array generated from an empty set cannot be zero, since there is
always an end-mark value.
As in set_map(), the order in which an array is created for each member is unspec-
ified.

Parameters
in set set for which array generated
in end end-mark to save in last element of array

Returns

array generated from set

4.1.2.12 set_t∗() set_union (set_t ∗ s, set_t ∗ t)

returns a union set of two sets.

set_union() creates a union set of two sets and returns it. One of those may be a null
pointer, in which case it is considered an empty set. For every operation, its result
constitutes a distinct set from the operand sets, which means the set operations always
allocate storage for their results even when one of the operands is empty.

Note that the inferface of the Set Library does not assume the concept of a universe,
which is the set of all possible members. Thus, a set operation like the complement is
not defined and not implemented.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Warning

To create a union of two sets, they have to share the same comparison and hashing
functions.

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

4.2 set.h File Reference 19

Parameters
in s operand of set union operation
in t operand of set union operation

Returns

union set

Todo Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair
of corresponding buckets when two given sets have the same number of
buckets.

Here is the call graph for this function:

4.2 set.h File Reference

Documentation for Set Library (CDSL)

#include <stddef.h> Include dependency graph for set.h: This graph shows
which files directly or indirectly include this file:

Typedefs

• typedef struct set_t set_t

represents a set.

Functions

set creating/destroying functions:

• set_t ∗ set_new (int, int(const void ∗, const void ∗), unsigned(const void ∗))
• void set_free (set_t ∗∗)

destroys a set.

data/information retrieving functions:

• size_t set_length (set_t ∗)
returns the length of a set.

• int set_member (set_t ∗, const void ∗)
inspects if a set contains a member.

• void set_put (set_t ∗, const void ∗)
puts a member to a set.

• void ∗ set_remove (set_t ∗, const void ∗)
removes a member from a set.

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

20 File Documentation

set handling functions:

• void set_map (set_t ∗, void(const void ∗, void ∗), void ∗)
• void ∗∗ set_toarray (set_t ∗, void ∗)

converts a set to an array.

set operation functions:

• set_t ∗ set_union (set_t ∗, set_t ∗)
returns a union set of two sets.

• set_t ∗ set_inter (set_t ∗, set_t ∗)
returns an intersection of two sets.

• set_t ∗ set_minus (set_t ∗, set_t ∗)
returns a difference set of two sets

• set_t ∗ set_diff (set_t ∗, set_t ∗)
returns a symmetric difference of two sets.

4.2.1 Detailed Description

Documentation for Set Library (CDSL) Header for Set Library (CDSL)

4.2.2 Function Documentation

4.2.2.1 set_t∗ set_diff (set_t ∗ s, set_t ∗ t)

returns a symmetric difference of two sets.

set_diff() returns a symmetric difference of two sets, that is a set with members only one
of two operand sets has. A symmetric difference set is identical to the union set of (s -
t) and (t - s). See set_union() for more detailed explanation commonly applied to the
set operation functions.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of set difference operation
in t operand of set difference operation

Returns

symmetric difference set

Todo Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair
of corresponding buckets when two given sets have the same number of
buckets.

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

4.2 set.h File Reference 21

Here is the call graph for this function:

4.2.2.2 void set_free (set_t ∗∗ pset)

destroys a set.

set_free() destroys a set by deallocating the storage for it and set a given pointer to a
null pointer. As always, set_free() does not deallocate any storage for members in the
set, which must be done by a user.

Possible exceptions: assert_exceptfail

Unchecked errors: pointer to foreign data structure given for pset

Parameters
in,out pset pointer to set to destroy

Returns

nothing

4.2.2.3 set_t∗ set_inter (set_t ∗ s, set_t ∗ t)

returns an intersection of two sets.

set_inter() returns an intersection of two sets, that is a set with only members that both
have in common. See set_union() for more detailed explanation commonly applied to
the set operation functions.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of set intersection operation
in t operand of set intersection operation

Returns

intersection set

Todo Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair
of corresponding buckets when two given sets have the same number of
buckets.

Here is the call graph for this function:

Here is the caller graph for this function:

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

22 File Documentation

4.2.2.4 size t set_length (set_t ∗ set)

returns the length of a set.

set_length() returns the length of a set which is the number of members in a set.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in set set whose length to be returned

Returns

length of set

4.2.2.5 int set_member (set_t ∗ set, const void ∗ member)

inspects if a set contains a member.

set_member() inspects a set to see if it contains a member.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in set set to inspect
in member member to find in a set

Returns

found/not found indicator

Return values
0 member not found
1 member found

Here is the caller graph for this function:

4.2.2.6 set_t∗ set_minus (set_t ∗ s, set_t ∗ t)

returns a difference set of two sets

set_minus() returns a difference of two sets, that is a set with members that t has but
does not. See set_union() for more detailed explanation commonly applied to the set
operation functions.

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

4.2 set.h File Reference 23

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of set difference operation
in t operand of set difference operation

Returns

difference set, s - t

Todo Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair
of corresponding buckets when two given sets have the same number of
buckets.

Here is the call graph for this function:

4.2.2.7 void set_put (set_t ∗ set, const void ∗ member)

puts a member to a set.

set_put() inserts a member to a set. If it fails to find a member matched to a given mem-
ber, it inserts the member to a set after proper storage allocation. If it finds a matched
one, it replaces an existing member with a new one. Because they has different repre-
sentations even if they compare equal by a user-defined comparison function, replacing
the old one with the new one makes sense.

Note that a member is a pointer. If members are, say, integers in an application, objects
to contain them are necessary to put them into a set.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set set to which member inserted
in member member to insert

Returns

nothing

Here is the caller graph for this function:

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

24 File Documentation

4.2.2.8 void∗ set_remove (set_t ∗ set, const void ∗ member)

removes a member from a set.

set_remove() gets rid of a member from a set. Note that set_remove() does not deallo-
cate any storage for the member to remove, which must be done by a user.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set set from whcih member removed
in member member to remove

Returns

previous member or null pointer

Return values
non-null previous member

NULL member not found

Warning

If the stored member is a null pointer, an ambiguous situation may occur.

4.2.2.9 void∗∗ set_toarray (set_t ∗ set, void ∗ end)

converts a set to an array.

set_toarray() converts members stored in a set to an array. The last element of the
constructed array is assigned by end, which is a null pointer in most cases. Do not
forget deallocate the array when it is unnecessary.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for set

Warning

The size of an array generated from an empty set cannot be zero, since there is
always an end-mark value.
As in set_map(), the order in which an array is created for each member is unspec-
ified.

Parameters
in set set for which array generated
in end end-mark to save in last element of array

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

4.2 set.h File Reference 25

Returns

array generated from set

4.2.2.10 set_t∗ set_union (set_t ∗ s, set_t ∗ t)

returns a union set of two sets.

set_union() creates a union set of two sets and returns it. One of those may be a null
pointer, in which case it is considered an empty set. For every operation, its result
constitutes a distinct set from the operand sets, which means the set operations always
allocate storage for their results even when one of the operands is empty.

Note that the inferface of the Set Library does not assume the concept of a universe,
which is the set of all possible members. Thus, a set operation like the complement is
not defined and not implemented.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Warning

To create a union of two sets, they have to share the same comparison and hashing
functions.

Parameters
in s operand of set union operation
in t operand of set union operation

Returns

union set

Todo Improvements are possible and planned:

• the code can be modified so that the operation is performed on each pair
of corresponding buckets when two given sets have the same number of
buckets.

Here is the call graph for this function:

Generated on Tue Apr 23 2013 22:32:03 for The Set Library by Doxygen

	C Data Structure Library: Set Library
	Introduction
	How to Use The Library
	Boilerplate Code
	Future Directions
	Storing Hash Numbers
	Improvement on Set Operations

	Contact Me
	Copyright

	Todo List
	File Index
	File List

	File Documentation
	set.c File Reference
	Detailed Description
	Function Documentation
	set_diff
	set_free
	set_inter
	set_length
	set_map
	set_member
	set_minus
	set_new
	set_put
	set_remove
	set_toarray
	set_union

	set.h File Reference
	Detailed Description
	Function Documentation
	set_diff
	set_free
	set_inter
	set_length
	set_member
	set_minus
	set_put
	set_remove
	set_toarray
	set_union

