
The Bit-vector Library
0.3.0

Generated by Doxygen 1.7.6.1

Tue Apr 23 2013 22:31:44

Contents

1 C Data Structure Library: Bit-vector Library 1

1.1 Introduction . 1

1.2 How to Use The Library . 2

1.3 Boilerplate Code . 2

1.4 Contact Me . 3

1.5 Copyright . 3

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 bitv.c File Reference . 7

3.1.1 Detailed Description . 8

3.1.2 Function Documentation . 8

3.1.2.1 bitv_clear . 8

3.1.2.2 bitv_count . 9

3.1.2.3 bitv_diff . 9

3.1.2.4 bitv_eq . 9

3.1.2.5 bitv_free . 10

3.1.2.6 bitv_get . 10

3.1.2.7 bitv_inter . 11

3.1.2.8 bitv_length . 11

3.1.2.9 bitv_leq . 11

3.1.2.10 bitv_lt . 12

3.1.2.11 bitv_map . 13

3.1.2.12 bitv_minus . 13

ii CONTENTS

3.1.2.13 bitv_new . 14

3.1.2.14 bitv_not . 14

3.1.2.15 bitv_put . 14

3.1.2.16 bitv_set . 15

3.1.2.17 bitv_setv . 15

3.1.2.18 bitv_union . 16

3.2 bitv.h File Reference . 17

3.2.1 Detailed Description . 18

3.2.2 Function Documentation . 18

3.2.2.1 bitv_clear . 18

3.2.2.2 bitv_count . 19

3.2.2.3 bitv_diff . 19

3.2.2.4 bitv_eq . 19

3.2.2.5 bitv_free . 20

3.2.2.6 bitv_get . 20

3.2.2.7 bitv_inter . 21

3.2.2.8 bitv_length . 21

3.2.2.9 bitv_leq . 21

3.2.2.10 bitv_lt . 22

3.2.2.11 bitv_minus . 23

3.2.2.12 bitv_new . 23

3.2.2.13 bitv_not . 23

3.2.2.14 bitv_put . 24

3.2.2.15 bitv_set . 24

3.2.2.16 bitv_setv . 25

3.2.2.17 bitv_union . 26

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

Chapter 1

C Data Structure Library: Bit-vector
Library

Version

0.3.0

Author

Jun Woong (woong.jun at gmail.com)

Date

last modified on 2013-04-19

1.1 Introduction

This document specifies the Bit-vector Library which belongs to the C Data Structure
Library. The basic structure is from David Hanson’s book, "C Interfaces and Implemen-
tations." I modifies the original implementation to make it more appropriate for my other
projects and to enhance its readibility; for example a prefix is used more strictly in order
to avoid the user namespace pollution.

Since the book explains its design and implementation in a very comprehensive way,
not to mention the copyright issues, it is nothing but waste to repeat it here, so I finish
this document by giving introduction to the library; how to use the facilities is deeply
explained in files that define them.

The Bit-vector Library reserves identifiers starting with bitv_ and BITV_, and imports
the Assertion Library (which requires the Exception Handling Library) and the Memory
Management Library.

2 C Data Structure Library: Bit-vector Library

1.2 How to Use The Library

The Bit-vector Library implements a bit-vector that is a set of integers. A unsigned
integer type like unsigned long or a bit-field in a struct or union is often used to
represent such a set, and various bitwise operators serve set operations; for example,
the bitwise OR operator effectively provides a union operation. This approach, however,
imposes a restriction that the size of a set should be limited by that of the primitive
integer type chosen. This Bit-vector Library gets rid of such a limit and allows users to
use a set of integers with an arbitrary size at the cost of dynamic memory allocation and
a more complex data structure than a simple integer type.

Similarly for other data structure libraries, use of the Bit-vector Library follows this
sequence: create, use and destroy.

In general, a null pointer given to an argument expecting a bit-vector is considered an
error which results in an assertion failure, but the functions for set operations (bitv_-
union(), bitv_inter(), bitv_minus() and bitv_diff()) take a null pointer as a valid argument
and treat it as representing an empty (all-bits-cleared) bit-vector. Also note that they
always produce a distinct bit-vector; none of them alters the original set.

1.3 Boilerplate Code

Using a bit-vector starts with creating one using bitv_new(). There are other ways to
create bit-vectors from an existing one with bitv_union(), bitv_inter(), bitv_minus() and
bitv_diff() (getting a union, intersection, difference, symmetric difference of bit-vectors,
respectively); all bit-vector creation functions allocate storage for a bit-vector to create
and if no allocation is possible, an exception is raised instead of returning a failure
indicator like a null pointer.

Once a bit-vector created, a bit in the vector can be set and cleared using bitv_put().
A sequence of bits also can be handled in group using bitv_set(), bitv_clear(), bitv_-
not() and bitv_setv(); unlike a generic set, the concept of a universe can be defined for
integral sets, thus we can have a function for complement. set_get() inspects if a certain
bit is set in a bit-vector, and bitv_length() gives the size (or the length) of a bit-vector
while bitv_count() counts the number of bits set in a given bit-vector.

bitv_map() offers a way to apply some operations on every bit in a bit-vector; it takes a
user-defined function and calls it for each of bits.

bitv_free() takes a bit-vector (to be precise, a pointer to a bit-vector) and releases the
storage used to maintain it.

As an example, the following code creates two bit-vectors each of which has 60 bits. It
then obtains two more from getting a union and intersection of them after setting bits in
different ways. It ends with printing bits in each set using a user-provided function and
destroying all vectors.

int len;
bitv_t *s, *t, *u, *v;
unsigned char a[] = { 0x42, 0x80, 0x79, 0x29, 0x54, 0x19, 0xFF };

s = bitv_new(60);

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

1.4 Contact Me 3

t = bitv_new(60);
len = bitv_length(s);

bitv_set(s, 10, 50);
bitv_setv(t, a, 7);

u = bitv_union(s, t);
v = bitv_inter(s, t);

bitv_map(s, print, &len);
bitv_map(t, print, &len);
bitv_map(u, print, &len);
bitv_map(v, print, &len);

bitv_free(&s);
bitv_free(&t);
bitv_free(&u);
bitv_free(&v);

where print() is defined as follows:

static void print(size_t n, int v, void *cl)
{

printf("%s%d", (n > 0 && n % 8 == 0)? " ": "", v);
if (n == *(int *)cl - 1)

puts("");
}

1.4 Contact Me

Visit http://code.woong.org to get the lastest version of this library. Only a
small portion of my homepage (http://www.woong.org) is maintained in English,
thus one who is not good at Korean would have difficulty when navigating most of other
pages served in Korean. If you think the information you are looking for is on pages
written in Korean, do not hesitate to send me an email to ask for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and I will reply as soon as possible.

1.5 Copyright

I do not wholly hold the copyright of this library; it is mostly held by David Hanson as
stated in his book, "C: Interfaces and Implementations:"

Copyright (c) 1994,1995,1996,1997 by David R. Hanson.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

http://code.woong.org
http://www.woong.org

4 C Data Structure Library: Bit-vector Library

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

For the parts I added or modified, the following applies:

Copyright (C) 2009-2013 by Jun Woong.

This package is a set implementation by Jun Woong. The implementation was written
so as to conform with the Standard C published by ISO 9899:1990 and ISO 9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRA-
NTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY -
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTE-
RRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

bitv.c
Source for Bit-vector Library (CDSL) 7

bitv.h
Header for Bit-vector Library (CDSL) 17

6 File Index

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

Chapter 3

File Documentation

3.1 bitv.c File Reference

Source for Bit-vector Library (CDSL)

#include <stddef.h> #include <string.h> #include "cbl/memory.-
h" #include "cbl/assert.h" #include "bitv.h" Include dependency
graph for bitv.c:

Functions

• bitv_t ∗() bitv_new (size_t len)

creates a new bit-vector.

• void() bitv_free (bitv_t ∗∗pset)

destroys a bit-vector.

• size_t() bitv_length (const bitv_t ∗set)

returns the length of a bit-vector.

• size_t() bitv_count (const bitv_t ∗set)

returns the number of bits set.

• int() bitv_get (const bitv_t ∗set, size_t n)

gets a bit in a bit-vector.

• int() bitv_put (bitv_t ∗set, size_t n, int bit)

changes the value of a bit in a bit-vector.

• void() bitv_set (bitv_t ∗set, size_t l, size_t h)

sets bits to 1 in a bit-vector.

• void() bitv_clear (bitv_t ∗set, size_t l, size_t h)

clears bits in a bit-vector.

• void() bitv_not (bitv_t ∗set, size_t l, size_t h)

complements bits in a bit-vector.

• void() bitv_setv (bitv_t ∗set, unsigned char ∗v, size_t n)

8 File Documentation

sets bits in a bit-vector with bit patterns.

• void() bitv_map (bitv_t ∗set, void apply(size_t, int, void ∗), void ∗cl)

calls a user-provided function for each bit in a bit-vector.

• int() bitv_eq (const bitv_t ∗s, const bitv_t ∗t)

compares two bit-vectors for equality.

• int() bitv_leq (const bitv_t ∗s, const bitv_t ∗t)

compares two bit-vectors for subset.

• int() bitv_lt (const bitv_t ∗s, const bitv_t ∗t)

compares two bit-vectors for proper subset.

• bitv_t ∗() bitv_union (const bitv_t ∗t, const bitv_t ∗s)

returns a union of two bit-vectors.

• bitv_t ∗() bitv_inter (const bitv_t ∗t, const bitv_t ∗s)

returns an intersection of two bit-vectors.

• bitv_t ∗() bitv_minus (const bitv_t ∗t, const bitv_t ∗s)

returns a difference of two bit-vectors.

• bitv_t ∗() bitv_diff (const bitv_t ∗t, const bitv_t ∗s)

returns a symmetric difference of two bit-vectors.

3.1.1 Detailed Description

Source for Bit-vector Library (CDSL)

3.1.2 Function Documentation

3.1.2.1 void() bitv_clear (bitv_t ∗ set, size t l, size t h)

clears bits in a bit-vector.

bitv_clear() clears bits in a specified range of a bit-vector. The inclusive lower bound l
and the inclusive upper bound h specify the range. l must be equal to or smaller than
h and h must be smaller than the length of the bit-vector to set.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set bit-vector to set
in l lower bound of range (inclusive)
in h upper bound of range (inclusive)

Returns

nothing

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

3.1 bitv.c File Reference 9

3.1.2.2 size t() bitv_count (const bitv_t ∗ set)

returns the number of bits set.

bitv_count() returns the number of bits set in a bit-vector.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in set bit-vector to count

Returns

number of bits set

3.1.2.3 bitv_t∗() bitv_diff (const bitv_t ∗ t, const bitv_t ∗ s)

returns a symmetric difference of two bit-vectors.

bitv_diff() returns a symmetric difference of two bit-vectors of the same length; the bit in
the resulting bit-vector is set if only one of the corresponding bits in the operands is set.
One of those may be a null pointer, in which case it is considered an empty (all-cleared)
bit-vector. bitv_diff() constitutes a distinct bit-vector from its operands as a result, which
means it always allocates storage for its result even when one of the operands is empty.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of difference operation
in t operand of difference operation

Returns

symmetric difference of bit-vectors

Here is the call graph for this function:

3.1.2.4 int() bitv_eq (const bitv_t ∗ s, const bitv_t ∗ t)

compares two bit-vectors for equality.

bitv_eq() compares two bit-vectors to check whether they are equal. Two bit-vectors
must be of the same length.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for s or t

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

10 File Documentation

Parameters
in s bit-vector to compare
in t bit-vector to compare

Returns

whether or not two bit-vectors compare equal

Return values
0 not equal
1 equal

3.1.2.5 void() bitv_free (bitv_t ∗∗ pset)

destroys a bit-vector.

bitv_free() destroys a bit-vector by deallocating the storage for it and set a given pointer
to a null pointer.

Possible exceptions: assert_exceptfail

Unchecked errors: pointer to foreign data structure given for pset

Parameters
in,out pset pointer to bit-vector to destroy

Returns

nothing

3.1.2.6 int() bitv_get (const bitv_t ∗ set, size t n)

gets a bit in a bit-vector.

bitv_get() inspects whether a bit in a bit-vector is set or not. The position of a bit to
inspect, n starts at 0 and must be smaller than the length of the bit-vector to inspect.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in set bit-vector to inspect
in n bit position

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

3.1 bitv.c File Reference 11

Returns

bit value (0 or 1)

3.1.2.7 bitv_t∗() bitv_inter (const bitv_t ∗ t, const bitv_t ∗ s)

returns an intersection of two bit-vectors.

bitv_inter() creates an intersection of two bit-vectors of the same length and returns it.
One of those may be a null pointer, in which case it is considered an empty (all-cleared)
bit-vector. bitv_inter() constitutes a distinct bit-vector from its operands as a result, which
means it always allocates storage for its result even when one of the operands is empty.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of intersection operation
in t operand of intersection operation

Returns

intersection of bit-vectors

Here is the call graph for this function:

3.1.2.8 size t() bitv_length (const bitv_t ∗ set)

returns the length of a bit-vector.

bitv_length() returns the length of a bit-vector which is the number of bits in a bit-vector.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in set bit-vector whose legnth returned

Returns

length of bit-vector

3.1.2.9 int() bitv_leq (const bitv_t ∗ s, const bitv_t ∗ t)

compares two bit-vectors for subset.

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

12 File Documentation

bitv_leq() compares two bit-vectors to check whether a bit-vector is a subset of the other;
note that two bit-vectors have a subset relationship for each other when they compare
equal. Two bit-vectors must be of the same length.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s bit-vector to compare
in t bit-vector to compare

Returns

whether s is a subset of t

Return values
0 s is not a subset of t
1 s is a subset of t

3.1.2.10 int() bitv_lt (const bitv_t ∗ s, const bitv_t ∗ t)

compares two bit-vectors for proper subset.

bitv_lt() compares two bit-vectors to check whether a bit-vector is a proper subset of the
other. Two bit-vectors must be of the same length.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s bit-vector to compare
in t bit-vector to compare

Returns

whether s is a proper subset of t

Return values
0 s is not a proper subset of t
1 s is a proper subset of t

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

3.1 bitv.c File Reference 13

3.1.2.11 void() bitv_map (bitv_t ∗ set, void applysize t, int, void ∗, void ∗ cl)

calls a user-provided function for each bit in a bit-vector.

For each bit in a bit-vector, bitv_map() calls a user-provided callback function; it is useful
when doing some common task for each bit. The pointer given in cl is passed to the
third parameter of a user callback function, so can be used as a communication channel
between the caller of bitv_map() and the callback. Differently from mapping functions
for other data structures (e.g., tables and sets), changes made in an earlier invocation
to apply are visible to later invocations.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set bit-vector with which apply called
in apply user-provided function (callback)
in cl passing-by argument to apply

Returns

nothing

3.1.2.12 bitv_t∗() bitv_minus (const bitv_t ∗ t, const bitv_t ∗ s)

returns a difference of two bit-vectors.

bitv_minus() returns a difference of two bit-vectors of the same length; the bit in the
resulting bit-vector is set if and only if the corresponding bit in the first operand is set
and the corresponding bit in the second operand is not set. One of those may be a
null pointer, in which case it is considered an empty (all-cleared) bit-vector. bitv_minus()
constitutes a distinct bit-vector from its operands as a result, which means it always
allocates storage for its result even when one of the operands is empty.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of difference operation
in t operand of difference operation

Returns

difference of bit-vectors, s - t

Here is the call graph for this function:

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

14 File Documentation

3.1.2.13 bitv_t∗() bitv_new (size t len)

creates a new bit-vector.

bitv_new() creates a new bit-vector. Since a bit-vector has a much simpler data structure
than a set (provided by cdsl/set) does, the only information that bitv_new() needs to
create a new instance is the length of the bit vector it will create; bitv_new() will create
a bit-vector with length bits. The length cannot be changed after creation.

Possible exceptions: mem_exceptfail

Parameters
in len length of bit-vector to create

new bit-vector created

Here is the caller graph for this function:

3.1.2.14 void() bitv_not (bitv_t ∗ set, size t l, size t h)

complements bits in a bit-vector.

bitv_not() flips bits in a specified range of a bit-vector. The inclusive lower bound l and
the inclusive upper bound h specify the range. l must be equal to or smaller than h
and h must be smaller than the length of the bit-vector to set.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set bit-vector to set
in l lower bound of range (inclusive)
in h upper bound of range (inclusive)

Returns

nothing

3.1.2.15 int() bitv_put (bitv_t ∗ set, size t n, int bit)

changes the value of a bit in a bit-vector.

bitv_put() changes the value of a bit in a bit-vector to 0 or 1 and returns its previous
value. The position of a bit to change, n starts at 0 and must be smaller than the length
of the bit-vector.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

3.1 bitv.c File Reference 15

Parameters
in,out set bit-vector to set
in n bit position
in bit value

Returns

previous value of bit

3.1.2.16 void() bitv_set (bitv_t ∗ set, size t l, size t h)

sets bits to 1 in a bit-vector.

bitv_set() sets bits in a specified range of a bit-vector to 1. The inclusive lower bound l
and the inclusive upper bound h specify the range. l must be equal to or smaller than
h and h must be smaller than the length of the bit-vector to set.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set bit-vector to set
in l lower bound of range (inclusive)
in h upper bound of range (inclusive)

Returns

nothing

3.1.2.17 void() bitv_setv (bitv_t ∗ set, unsigned char ∗ v, size t n)

sets bits in a bit-vector with bit patterns.

bitv_setv() copies bit patterns from an array of bytes to a bit vector. Because only 8
bits in a byte are used to represent a bit-vector for table-driven approaches, any excess
bits are masked out before copying, which explains why bitv_setv() needs to modify the
array, v.

Be careful with how to count bit positions in a bit vector. Within a byte, the first bit (the
bit position 0) indicates the least significant bit of a byte and the last bit (the bit position
7) does the most significant bit. Therefore, the array

{ 0x01, 0x02, 0x03, 0x04 }

can be used to set bits of a bit-vector as follows:

0 8 16 24 31

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

16 File Documentation

| | | | |
10000000 01000000 11000000 00100000

where the bit position is shown on the first line.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set, invalid pointer given for v,
invalid size given for n

Parameters
in,out set bit-vector to set
in,out v bit patterns to use
in n size of v in bytes

Returns

nothing

3.1.2.18 bitv_t∗() bitv_union (const bitv_t ∗ t, const bitv_t ∗ s)

returns a union of two bit-vectors.

bitv_union() creates a union of two given bit-vectors of the same length and returns it.
One of those may be a null pointer, in which case it is considered an empty (all-cleared)
bit-vector. bitv_union() constitutes a distinct bit-vector from its operands as a result,
which means it always allocates storage for its results even when one of the operands
is empty. This property can be used to make a copy of a bit-vector as follows:

bitv_t *v *w;
v = bitv_new(n);
...
w = bitv_union(v, NULL);

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of union operation
in t operand of union operation

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

3.2 bitv.h File Reference 17

Returns

union of bit-vectors

3.2 bitv.h File Reference

Header for Bit-vector Library (CDSL)

#include <stddef.h> Include dependency graph for bitv.h: This graph shows
which files directly or indirectly include this file:

Typedefs

• typedef struct bitv_t bitv_t

represents a bit-vector.

Functions

bit-vector creating/destroying functions:

• bitv_t ∗ bitv_new (size_t)
creates a new bit-vector.

• void bitv_free (bitv_t ∗∗)
destroys a bit-vector.

data/information retrieving functions:

• size_t bitv_length (const bitv_t ∗)
returns the length of a bit-vector.

• size_t bitv_count (const bitv_t ∗)
returns the number of bits set.

• int bitv_get (const bitv_t ∗, size_t)
gets a bit in a bit-vector.

• int bitv_put (bitv_t ∗, size_t, int)
changes the value of a bit in a bit-vector.

• void bitv_set (bitv_t ∗, size_t, size_t)
sets bits to 1 in a bit-vector.

• void bitv_clear (bitv_t ∗, size_t, size_t)
clears bits in a bit-vector.

• void bitv_not (bitv_t ∗, size_t, size_t)
complements bits in a bit-vector.

• void bitv_setv (bitv_t ∗, unsigned char ∗, size_t)
sets bits in a bit-vector with bit patterns.

bit-vector handling functions:

• void bitv_map (bitv_t ∗, void(size_t, int, void ∗), void ∗)

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

18 File Documentation

bit-vector comparison functions:

• int bitv_eq (const bitv_t ∗, const bitv_t ∗)
compares two bit-vectors for equality.

• int bitv_leq (const bitv_t ∗, const bitv_t ∗)
compares two bit-vectors for subset.

• int bitv_lt (const bitv_t ∗, const bitv_t ∗)
compares two bit-vectors for proper subset.

set operation functions:

• bitv_t ∗ bitv_union (const bitv_t ∗, const bitv_t ∗)
returns a union of two bit-vectors.

• bitv_t ∗ bitv_inter (const bitv_t ∗, const bitv_t ∗)
returns an intersection of two bit-vectors.

• bitv_t ∗ bitv_minus (const bitv_t ∗, const bitv_t ∗)
returns a difference of two bit-vectors.

• bitv_t ∗ bitv_diff (const bitv_t ∗, const bitv_t ∗)
returns a symmetric difference of two bit-vectors.

3.2.1 Detailed Description

Header for Bit-vector Library (CDSL) Documentation for Bit-vector Library (CDSL)

3.2.2 Function Documentation

3.2.2.1 void bitv_clear (bitv_t ∗ set, size t l, size t h)

clears bits in a bit-vector.

bitv_clear() clears bits in a specified range of a bit-vector. The inclusive lower bound l
and the inclusive upper bound h specify the range. l must be equal to or smaller than
h and h must be smaller than the length of the bit-vector to set.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set bit-vector to set
in l lower bound of range (inclusive)
in h upper bound of range (inclusive)

Returns

nothing

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

3.2 bitv.h File Reference 19

3.2.2.2 size t bitv_count (const bitv_t ∗ set)

returns the number of bits set.

bitv_count() returns the number of bits set in a bit-vector.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in set bit-vector to count

Returns

number of bits set

3.2.2.3 bitv_t∗ bitv_diff (const bitv_t ∗ t, const bitv_t ∗ s)

returns a symmetric difference of two bit-vectors.

bitv_diff() returns a symmetric difference of two bit-vectors of the same length; the bit in
the resulting bit-vector is set if only one of the corresponding bits in the operands is set.
One of those may be a null pointer, in which case it is considered an empty (all-cleared)
bit-vector. bitv_diff() constitutes a distinct bit-vector from its operands as a result, which
means it always allocates storage for its result even when one of the operands is empty.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of difference operation
in t operand of difference operation

Returns

symmetric difference of bit-vectors

Here is the call graph for this function:

3.2.2.4 int bitv_eq (const bitv_t ∗ s, const bitv_t ∗ t)

compares two bit-vectors for equality.

bitv_eq() compares two bit-vectors to check whether they are equal. Two bit-vectors
must be of the same length.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for s or t

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

20 File Documentation

Parameters
in s bit-vector to compare
in t bit-vector to compare

Returns

whether or not two bit-vectors compare equal

Return values
0 not equal
1 equal

3.2.2.5 void bitv_free (bitv_t ∗∗ pset)

destroys a bit-vector.

bitv_free() destroys a bit-vector by deallocating the storage for it and set a given pointer
to a null pointer.

Possible exceptions: assert_exceptfail

Unchecked errors: pointer to foreign data structure given for pset

Parameters
in,out pset pointer to bit-vector to destroy

Returns

nothing

3.2.2.6 int bitv_get (const bitv_t ∗ set, size t n)

gets a bit in a bit-vector.

bitv_get() inspects whether a bit in a bit-vector is set or not. The position of a bit to
inspect, n starts at 0 and must be smaller than the length of the bit-vector to inspect.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in set bit-vector to inspect
in n bit position

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

3.2 bitv.h File Reference 21

Returns

bit value (0 or 1)

3.2.2.7 bitv_t∗ bitv_inter (const bitv_t ∗ t, const bitv_t ∗ s)

returns an intersection of two bit-vectors.

bitv_inter() creates an intersection of two bit-vectors of the same length and returns it.
One of those may be a null pointer, in which case it is considered an empty (all-cleared)
bit-vector. bitv_inter() constitutes a distinct bit-vector from its operands as a result, which
means it always allocates storage for its result even when one of the operands is empty.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of intersection operation
in t operand of intersection operation

Returns

intersection of bit-vectors

Here is the call graph for this function:

3.2.2.8 size t bitv_length (const bitv_t ∗ set)

returns the length of a bit-vector.

bitv_length() returns the length of a bit-vector which is the number of bits in a bit-vector.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in set bit-vector whose legnth returned

Returns

length of bit-vector

3.2.2.9 int bitv_leq (const bitv_t ∗ s, const bitv_t ∗ t)

compares two bit-vectors for subset.

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

22 File Documentation

bitv_leq() compares two bit-vectors to check whether a bit-vector is a subset of the other;
note that two bit-vectors have a subset relationship for each other when they compare
equal. Two bit-vectors must be of the same length.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s bit-vector to compare
in t bit-vector to compare

Returns

whether s is a subset of t

Return values
0 s is not a subset of t
1 s is a subset of t

3.2.2.10 int bitv_lt (const bitv_t ∗ s, const bitv_t ∗ t)

compares two bit-vectors for proper subset.

bitv_lt() compares two bit-vectors to check whether a bit-vector is a proper subset of the
other. Two bit-vectors must be of the same length.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s bit-vector to compare
in t bit-vector to compare

Returns

whether s is a proper subset of t

Return values
0 s is not a proper subset of t
1 s is a proper subset of t

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

3.2 bitv.h File Reference 23

3.2.2.11 bitv_t∗ bitv_minus (const bitv_t ∗ t, const bitv_t ∗ s)

returns a difference of two bit-vectors.

bitv_minus() returns a difference of two bit-vectors of the same length; the bit in the
resulting bit-vector is set if and only if the corresponding bit in the first operand is set
and the corresponding bit in the second operand is not set. One of those may be a
null pointer, in which case it is considered an empty (all-cleared) bit-vector. bitv_minus()
constitutes a distinct bit-vector from its operands as a result, which means it always
allocates storage for its result even when one of the operands is empty.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of difference operation
in t operand of difference operation

Returns

difference of bit-vectors, s - t

Here is the call graph for this function:

3.2.2.12 bitv_t∗ bitv_new (size t len)

creates a new bit-vector.

bitv_new() creates a new bit-vector. Since a bit-vector has a much simpler data structure
than a set (provided by cdsl/set) does, the only information that bitv_new() needs to
create a new instance is the length of the bit vector it will create; bitv_new() will create
a bit-vector with length bits. The length cannot be changed after creation.

Possible exceptions: mem_exceptfail

Parameters
in len length of bit-vector to create

new bit-vector created

Here is the caller graph for this function:

3.2.2.13 void bitv_not (bitv_t ∗ set, size t l, size t h)

complements bits in a bit-vector.

bitv_not() flips bits in a specified range of a bit-vector. The inclusive lower bound l and
the inclusive upper bound h specify the range. l must be equal to or smaller than h
and h must be smaller than the length of the bit-vector to set.

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

24 File Documentation

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set bit-vector to set
in l lower bound of range (inclusive)
in h upper bound of range (inclusive)

Returns

nothing

3.2.2.14 int bitv_put (bitv_t ∗ set, size t n, int bit)

changes the value of a bit in a bit-vector.

bitv_put() changes the value of a bit in a bit-vector to 0 or 1 and returns its previous
value. The position of a bit to change, n starts at 0 and must be smaller than the length
of the bit-vector.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Parameters
in,out set bit-vector to set
in n bit position
in bit value

Returns

previous value of bit

3.2.2.15 void bitv_set (bitv_t ∗ set, size t l, size t h)

sets bits to 1 in a bit-vector.

bitv_set() sets bits in a specified range of a bit-vector to 1. The inclusive lower bound l
and the inclusive upper bound h specify the range. l must be equal to or smaller than
h and h must be smaller than the length of the bit-vector to set.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

3.2 bitv.h File Reference 25

Parameters
in,out set bit-vector to set
in l lower bound of range (inclusive)
in h upper bound of range (inclusive)

Returns

nothing

3.2.2.16 void bitv_setv (bitv_t ∗ set, unsigned char ∗ v, size t n)

sets bits in a bit-vector with bit patterns.

bitv_setv() copies bit patterns from an array of bytes to a bit vector. Because only 8
bits in a byte are used to represent a bit-vector for table-driven approaches, any excess
bits are masked out before copying, which explains why bitv_setv() needs to modify the
array, v.

Be careful with how to count bit positions in a bit vector. Within a byte, the first bit (the
bit position 0) indicates the least significant bit of a byte and the last bit (the bit position
7) does the most significant bit. Therefore, the array

{ 0x01, 0x02, 0x03, 0x04 }

can be used to set bits of a bit-vector as follows:

0 8 16 24 31
| | | | |
10000000 01000000 11000000 00100000

where the bit position is shown on the first line.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for set, invalid pointer given for v,
invalid size given for n

Parameters
in,out set bit-vector to set
in,out v bit patterns to use
in n size of v in bytes

Returns

nothing

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

26 File Documentation

3.2.2.17 bitv_t∗ bitv_union (const bitv_t ∗ t, const bitv_t ∗ s)

returns a union of two bit-vectors.

bitv_union() creates a union of two given bit-vectors of the same length and returns it.
One of those may be a null pointer, in which case it is considered an empty (all-cleared)
bit-vector. bitv_union() constitutes a distinct bit-vector from its operands as a result,
which means it always allocates storage for its results even when one of the operands
is empty. This property can be used to make a copy of a bit-vector as follows:

bitv_t *v *w;
v = bitv_new(n);
...
w = bitv_union(v, NULL);

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: foreign data structure given for s or t

Parameters
in s operand of union operation
in t operand of union operation

Returns

union of bit-vectors

Generated on Tue Apr 23 2013 22:31:44 for The Bit-vector Library by Doxygen

	C Data Structure Library: Bit-vector Library
	Introduction
	How to Use The Library
	Boilerplate Code
	Contact Me
	Copyright

	File Index
	File List

	File Documentation
	bitv.c File Reference
	Detailed Description
	Function Documentation
	bitv_clear
	bitv_count
	bitv_diff
	bitv_eq
	bitv_free
	bitv_get
	bitv_inter
	bitv_length
	bitv_leq
	bitv_lt
	bitv_map
	bitv_minus
	bitv_new
	bitv_not
	bitv_put
	bitv_set
	bitv_setv
	bitv_union

	bitv.h File Reference
	Detailed Description
	Function Documentation
	bitv_clear
	bitv_count
	bitv_diff
	bitv_eq
	bitv_free
	bitv_get
	bitv_inter
	bitv_length
	bitv_leq
	bitv_lt
	bitv_minus
	bitv_new
	bitv_not
	bitv_put
	bitv_set
	bitv_setv
	bitv_union

