
The Arena Library
0.2.1

Generated by Doxygen 1.7.6.1

Tue Apr 23 2013 22:31:26

Contents

1 C Basic Library: Arena Library 1

1.1 Introduction . 1

1.2 How to Use The Library . 2

1.2.1 Some Caveats . 3

1.3 Boilerplate Code . 3

1.4 Future Directions . 4

1.4.1 Minor Changes . 4

1.5 Contact Me . 4

1.6 Copyright . 4

2 Todo List 7

3 File Index 9

3.1 File List . 9

4 File Documentation 11

4.1 arena.c File Reference . 11

4.1.1 Detailed Description . 12

4.1.2 Function Documentation . 12

4.1.2.1 arena_alloc . 12

4.1.2.2 arena_calloc . 12

4.1.2.3 arena_dispose . 13

4.1.2.4 arena_free . 13

4.1.2.5 arena_new . 14

4.2 arena.h File Reference . 14

4.2.1 Detailed Description . 15

ii CONTENTS

4.2.2 Typedef Documentation . 15

4.2.2.1 arena_t . 15

4.2.3 Function Documentation . 15

4.2.3.1 arena_alloc . 15

4.2.3.2 arena_calloc . 16

4.2.3.3 arena_dispose . 17

4.2.3.4 arena_free . 17

4.2.3.5 arena_new . 17

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

Chapter 1

C Basic Library: Arena Library

Version

0.2.1

Author

Jun Woong (woong.jun at gmail.com)

Date

last modified on 2013-04-23

1.1 Introduction

This document specifies the Arena Library which belings to the C Basic Library. The
basic structure is from David Hanson’s book, "C Interfaces and Implementations." -
I modified the original implementation to make it conform to the C standard and to
enhance its readibility; for example a prefix is used more strictly in order to avoid the
user namespace pollution.

Since the book explains its design and implementation in a very comprehensive way,
not to mention the copyright issues, it is nothing but waste to repeat it here, so I finish
this document by giving a brief motivation and introduction to the library; how to use the
facilities is deeply explained in files that define them.

malloc() and other related functions from <stdlib.h> provide facilities for the size-based
memory allocation strategy. Each invocation to allocation functions requires a corre-
sponding invocation to deallocation functions in order to avoid the memory leakage
problem. Under certain circumstances the size-based memory allocator is not the best
way to manage storage. For example, consider a script interpreter that accepts multiple
scripts and parses them for execution in sequence. During running a script, many data
structures including trees from a parser and tables for symbols should be maintained

2 C Basic Library: Arena Library

and those structures often require complicated patterns of memory allocation/dealloca-
tion. Besides, they should be correctly freed after the sciprt has been processed and
before processing of the next sciprt starts off. In such a situation, a lifetime-based mem-
ory allocator can work better and simplify the patterns of (de)allocation. With a lifetime-
based memory allocator, all storages allocated for processing a script is remembered
somehow, and all the instances can be freed at a time when processing the script has
finished. The Arena Library provides a lifetime-based memory allocator. Hanson’s book
also mentions constructing a graphic user interface (having various features like input
forms, scroll bars and buttons) as an example where a lifetime-based allocator does
better than a size-based one.

The Arena Library reserves identifiers starting with arena_ and ARENA_, and imports
the Assertion Library and the Exception Handling Library. Even if it does not depend on
the Memory Management Library, it also uses the identifier MEM_MAXALIGN.

1.2 How to Use The Library

Basically, using the Arena Library to allocate storages does not quite differ from using
malloc() or similars from <stdlib.h>. The differences are that every allocation function
takes an additional argument to specify an arena, and that there is no need to invoke a
deallocation function for each of allocated storage blocks; a function to free all storages
associated with an arena is provided.

typeA *p = malloc(sizeof(*p));
...
typeB *q = malloc(sizeof(*p));
...
free(p);
free(q);

For example, suppose that p and q point to two areas that have been allocated at
different places but can be freed at the same time. As the number of such instances
increases, deallocating them gets more complicated and thus necessarily more error-
prone.

typeA *p = ARENA_ALLOC(myarena, sizeof(*p));
...
typeB *q = ARENA_ALLOC(myarena, sizeof(*q));
...
ARENA_FREE(myarena);

On the other hand, if the allocator that the Arena Library offers is used, only one call to
ARENA_FREE() frees all storages associated with the arena, myarena.

Applying to the problem mentioned to introduce a lifetime-based allocator, all storages
for data structures used while a script is processed can be associated with an arena
and get freed readily by ARENA_FREE() before moving to the next script.

As <stdlib.h> provides malloc() and calloc(), this library does ARENA_ALLOC() and
ARENA_CALLOC() taking similar arguments. ARENA_FREE() does what free() does
(actually, it does more as explained above). ARENA_NEW() creates an arena with

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

1.3 Boilerplate Code 3

which allocated storages will be associated, and ARENA_DISPOSE() destroys an
arena, which means that an arena itself may be reused repeatedly even after all stor-
ages with it have been freed by ARENA_FREE().

1.2.1 Some Caveats

As in the debugging version of the Memory Management Library, MEM_MAXALIGN
indicates the common alignment factor; in other words, the alignment factor of pointers
malloc() returns. If it is not given, the library tries to guess a proper value, but no
guarantee that the guess is correct. Therefore, it is recommended to give a proper
definition for MEM_MAXALIGN (via a compiler option like -D, if available).

Note that the Arena Library does not rely on the Memory Management Library. This
means it constitutes a completely different allocator. Thus, the debugging version of the
Memory Management Library cannot detect problems occurred in the storages main-
tained by the Arena Library.

1.3 Boilerplate Code

Using an arena starts with creating it:

arena_t myarena = ARENA_NEW();

As in the Memory Management Library, you don’t need to check the return value of AR-
ENA_NEW(); an exception named arena_exceptfailNew will be raised if the cre-
ation fails (see the Exception Handling Library for how to handle exceptions). Creating
an arena is different from allocating a necessary storage. With an arena, you can freely
allocate storages that belong to it with ARENA_ALLOC() or ARENA_CALLOC() as in:

sometype_t *p = ARENA_ALLOC(myarena, sizeof(*p));
othertype_t *q = ARENA_CALLOC(myarena, 10, sizeof(*q));

Again, you don’t have to check the return value of these invocations. If no storage
is able to be allocated, an exception, arena_exceptfailAlloc will be raised. -
Due to problems in implementation, adjusting the size of the allocated storage is not
supported; there is no ARENA_REALLOC() or ARENA_RESIZE() that corresponds to
realloc().

There are two ways to release storages with an arena: ARENA_FREE() and ARENA_-
DISPOSE().

ARENA_FREE(myarena);
... myarena can be reused ...
ARENA_DISPOSE(myarena);

ARENA_FREE() deallocates any storage belonging to an arena, while ARENA_DISP-
OSE() does the same job and also destroy the arena to make it no more usable.

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

4 C Basic Library: Arena Library

If you have a plan to use a tool like Valgrind to detect memory-related problems, see
arena_dispose(); ARENA_DISPOSE() is a simple macro wrapper for arena_dispose()
to keep the interface consistent.

1.4 Future Directions

1.4.1 Minor Changes

To mimic the behavior of calloc() specified by the standard, it is required for ARENA-
_CALLOC() to successfully return a null pointer when it cannot allocate storage of the
requested size. Since this does not allow overflow, it has to carefully check overflow
when calculating the total size.

1.5 Contact Me

Visit http://code.woong.org to get the latest version of this library. Only a small
portion of my homepage (http://www.woong.org) is maintained in English, thus
one who is not good at Korean would have difficulty when navigating most of other
pages served in Korean. If you think the information you are looking for is on pages
written in Korean, do not hesitate to send me an email to ask for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and I will reply as soon as possible.

1.6 Copyright

I do not wholly hold the copyright of this library; it is mostly held by David Hanson as
stated in his book, "C: Interfaces and Implementations:"

Copyright (c) 1994,1995,1996,1997 by David R. Hanson.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

For the parts I added or modified, the following applies:

Copyright (C) 2009-2013 by Jun Woong.

This package is a lifetime-based memory allocator implementation by Jun Woong. The
implementation was written so as to conform with the Standard C published by ISO
9899:1990 and ISO 9899:1999.

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

http://code.woong.org
http://www.woong.org

1.6 Copyright 5

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRA-
NTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY -
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTE-
RRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

6 C Basic Library: Arena Library

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

Chapter 2

Todo List

Global arena_calloc (arena_t ∗, size_t c, size_t n, const char ∗, int)

Some improvements are possible and planned:

• the C standard requires calloc() return a null pointer if it cannot allocates stor-
age of the size c ∗ n in bytes, which allows no overflow in computing the
multiplication. Overflow checking is necessary to mimic the behavior of cal-
loc().

Global arena_calloc (arena_t ∗, size_t c, size_t n, const char ∗, int)

Some improvements are possible and planned:

• the C standard requires calloc() return a null pointer if it cannot allocates stor-
age of the size c ∗ n in bytes, which allows no overflow in computing the
multiplication. Overflow checking is necessary to mimic the behavior of cal-
loc().

8 Todo List

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

arena.c
Source for Arena Library (CBL) . 11

arena.h
Header for Arena Library (CBL) 14

10 File Index

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

Chapter 4

File Documentation

4.1 arena.c File Reference

Source for Arena Library (CBL)

#include <stddef.h> #include <stdlib.h> #include <string.-
h> #include "cbl/assert.h" #include "cbl/except.h" #include
"arena.h" Include dependency graph for arena.c:

Functions

• arena_t ∗() arena_new (void)

creates a new arena.

• void() arena_dispose (arena_t ∗∗parena)

disposes an arena.

• void ∗() arena_alloc (arena_t ∗arena, size_t n, const char ∗file, int line)

allocates storage associated with an arena.

• void ∗() arena_calloc (arena_t ∗arena, size_t c, size_t n, const char ∗file, int
line)

allocates zero-filled storage associated with an arena.

• void() arena_free (arena_t ∗arena)

deallocates all storages belonging to an arena.

Variables

• const except_t arena_exceptfailNew = { "Arena creation failed" }

exception for arena creation failure.

• const except_t arena_exceptfailAlloc = { "Arena allocation failed" }

exception for arena memory allocation failure.

12 File Documentation

4.1.1 Detailed Description

Source for Arena Library (CBL)

4.1.2 Function Documentation

4.1.2.1 void∗() arena_alloc (arena_t ∗ arena, size t n, const char ∗ file, int line)

allocates storage associated with an arena.

arena_alloc() allocates storage for an arena as malloc() or mem_alloc() does.

Possible exceptions: assert_exceptfail, arena_exceptfailAlloc

Unchecked errors: foreign data structure given for arena

Parameters
in,out arena arena for which storage to be allocated
in n size of storage requested in bytes
in file file name in which storage requested
in func function name in which storage requested (if C99 sup-

ported)
in line line number on which storage requested

Returns

storage allocated for given arena

Here is the caller graph for this function:

4.1.2.2 void∗() arena_calloc (arena_t ∗ arena, size t c, size t n, const char ∗ file, int line)

allocates zero-filled storage associated with an arena.

arena_calloc() does the same as arena_alloc() except that it returns zero-filled storage.

Possible exceptions: assert_exceptfail, arena_exceptfailAlloc

Unchecked errors: foreign data structure given for arena

Parameters
in,out arena arena for which zero-filled storage is to be allocated
in c number of items to be allocated
in n size in bytes for one item
in file file name in which storage requested
in func function name in which storage requested (if C99 sup-

ported)
in line line number on which storage requested

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

4.1 arena.c File Reference 13

Returns

zero-filled storage allocated for arena

Todo Some improvements are possible and planned:

• the C standard requires calloc() return a null pointer if it cannot allocates
storage of the size c ∗ n in bytes, which allows no overflow in computing
the multiplication. Overflow checking is necessary to mimic the behavior of
calloc().

Here is the call graph for this function:

4.1.2.3 void() arena_dispose (arena_t ∗∗ parena)

disposes an arena.

arena_dispose() releases storages belonging to a given arena and disposes it. Do not
confuse with arena_free() which gets all storages of an arena deallocated but does not
destroy the arena itself.

Note that storages belonging to freelist is not deallcated by arena_dispose() be-
cause it is possibly used by other arenas. Thus, a tool detecting the memory leakage
problem might say there is leakage caused by the library, but that is intended not a bug.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for parena

Parameters
in,out parena pointer to arena to dispose

Returns

nothing

Here is the call graph for this function:

4.1.2.4 void() arena_free (arena_t ∗ arena)

deallocates all storages belonging to an arena.

arena_free() releases all storages belonging to a given arena.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for arena

Parameters
in,out arena arena whose storages to be deallocated

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

14 File Documentation

Returns

nothing

Here is the caller graph for this function:

4.1.2.5 arena_t∗() arena_new (void)

creates a new arena.

arena_new() creates a new arena and initialize it to indicate an empty arena.

Possible exceptions: arena_exceptfailNew

Unchecked errors: none

Returns

new arena created

4.2 arena.h File Reference

Header for Arena Library (CBL)

#include <stddef.h> #include "cbl/except.h" Include dependency
graph for arena.h: This graph shows which files directly or indirectly include this file:

Defines

• #define ARENA_NEW() (arena_new())

allocates a new arena.

• #define ARENA_DISPOSE(pa) (arena_dispose(pa))

destroys an arena pointed to by pa.

• #define ARENA_ALLOC(a, n) (arena_alloc((a), (n), __FILE__, __LINE__))

allocates storage whose byte length is n for an arena a.

• #define ARENA_CALLOC(a, c, n) (arena_calloc((a), (c), (n), __FILE__, __LINE-
__))

allocates zero-filled storage of the size c ∗ n for an arena a.

• #define ARENA_FREE(a) (arena_free(a))

deallocates strorages belonging to an arena a.

Typedefs

• typedef struct arena_t arena_t

represents an arena.

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

4.2 arena.h File Reference 15

Functions

arena creating functions:

• arena_t ∗ arena_new (void)
creates a new arena.

memory allocating/deallocating functions:

• void ∗ arena_alloc (arena_t ∗, size_t n, const char ∗, int)
allocates storage associated with an arena.

• void ∗ arena_calloc (arena_t ∗, size_t c, size_t n, const char ∗, int)
allocates zero-filled storage associated with an arena.

• void arena_free (arena_t ∗arena)
deallocates all storages belonging to an arena.

arena destroying functions:

• void arena_dispose (arena_t ∗∗)
disposes an arena.

Variables

• const except_t arena_exceptfailNew

exception for arena creation failure.

• const except_t arena_exceptfailAlloc

exception for arena memory allocation failure.

4.2.1 Detailed Description

Header for Arena Library (CBL) Documentation for Arena Library (CBL)

4.2.2 Typedef Documentation

4.2.2.1 typedef struct arena_t arena_t

represents an arena.

arena_t represents an arena to which storages belongs.

4.2.3 Function Documentation

4.2.3.1 void∗ arena_alloc (arena_t ∗ arena, size t n, const char ∗ file, int line)

allocates storage associated with an arena.

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

16 File Documentation

arena_alloc() allocates storage for an arena as malloc() or mem_alloc() does.

Possible exceptions: assert_exceptfail, arena_exceptfailAlloc

Unchecked errors: foreign data structure given for arena

Parameters
in,out arena arena for which storage to be allocated
in n size of storage requested in bytes
in file file name in which storage requested
in func function name in which storage requested (if C99 sup-

ported)
in line line number on which storage requested

Returns

storage allocated for given arena

Here is the caller graph for this function:

4.2.3.2 void∗ arena_calloc (arena_t ∗ arena, size t c, size t n, const char ∗ file, int line)

allocates zero-filled storage associated with an arena.

arena_calloc() does the same as arena_alloc() except that it returns zero-filled storage.

Possible exceptions: assert_exceptfail, arena_exceptfailAlloc

Unchecked errors: foreign data structure given for arena

Parameters
in,out arena arena for which zero-filled storage is to be allocated
in c number of items to be allocated
in n size in bytes for one item
in file file name in which storage requested
in func function name in which storage requested (if C99 sup-

ported)
in line line number on which storage requested

Returns

zero-filled storage allocated for arena

Todo Some improvements are possible and planned:

• the C standard requires calloc() return a null pointer if it cannot allocates
storage of the size c ∗ n in bytes, which allows no overflow in computing
the multiplication. Overflow checking is necessary to mimic the behavior of
calloc().

Here is the call graph for this function:

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

4.2 arena.h File Reference 17

4.2.3.3 void arena_dispose (arena_t ∗∗ parena)

disposes an arena.

arena_dispose() releases storages belonging to a given arena and disposes it. Do not
confuse with arena_free() which gets all storages of an arena deallocated but does not
destroy the arena itself.

Note that storages belonging to freelist is not deallcated by arena_dispose() be-
cause it is possibly used by other arenas. Thus, a tool detecting the memory leakage
problem might say there is leakage caused by the library, but that is intended not a bug.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for parena

Parameters
in,out parena pointer to arena to dispose

Returns

nothing

Here is the call graph for this function:

4.2.3.4 void arena_free (arena_t ∗ arena)

deallocates all storages belonging to an arena.

arena_free() releases all storages belonging to a given arena.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for arena

Parameters
in,out arena arena whose storages to be deallocated

Returns

nothing

Here is the caller graph for this function:

4.2.3.5 arena_t∗ arena_new (void)

creates a new arena.

arena_new() creates a new arena and initialize it to indicate an empty arena.

Possible exceptions: arena_exceptfailNew

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

18 File Documentation

Unchecked errors: none

Returns

new arena created

Generated on Tue Apr 23 2013 22:31:26 for The Arena Library by Doxygen

	C Basic Library: Arena Library
	Introduction
	How to Use The Library
	Some Caveats

	Boilerplate Code
	Future Directions
	Minor Changes

	Contact Me
	Copyright

	Todo List
	File Index
	File List

	File Documentation
	arena.c File Reference
	Detailed Description
	Function Documentation
	arena_alloc
	arena_calloc
	arena_dispose
	arena_free
	arena_new

	arena.h File Reference
	Detailed Description
	Typedef Documentation
	arena_t

	Function Documentation
	arena_alloc
	arena_calloc
	arena_dispose
	arena_free
	arena_new

