The Doubly-Linked List Library
0.2.1

Generated by Doxygen 1.7.6.1

Tue Apr 23 2013 22:31:49

Contents

1 C Data Structure Library: Doubly-Linked List Library 1
1.1 Introduction 1
1.2 HowtoUseThelibrary 2
1.3 Boilerplate Code 2
1.4 Future Directions 3
1.5 ContactMe 3
1.6 Copyright 4

2 File Index 5
21 FileList 5

3 File Documentation 7
3.1 dlistcFileReference L. 7

3.1.1 Detailed Description 8
3.1.2 Function Documentation 8
3121 distadd 8
3.1.22 dlist addhead 9
3.1.23 dlist addtail L. 9
3124 dlistfree 9
3125 dlistget 10
3126 dlistlength 10
3.1.27 dlistlist 11
3128 dlistnew 11
3129 dlistput 12
3.1.2.10 dlist. remhead 12

3.1.2.11 dlist.remove 12

CONTENTS

3.1.2.12
3.1.2.13

3.2 dlist.h File Reference

3.2.1

3.2.2 Function Documentation

3.2.2.1
3.2.2.2
3.2.2.3
3.2.2.4
3.2.25
3.2.2.6
3.2.2.7
3.2.2.8
3.2.2.9
3.2.2.10
3.2.2.11
3.2.2.12
3.2.2.13

Detailed Description

dlist remtail 13
diist_shift L 13
........................... 14
....................... 15
..................... 15

diist.add 15
dliist addhead 16
dlist_addtail 16
diist free 17
diist. get 17
diist length 17
diist list 18
dlist new oL 18
diist put 19
dlist remhead 19
dlist. remove, 19
dlist remtail 20
diist_shift oL 20

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

Chapter 1

C Data Structure Library:
Doubly-Linked List Library

Version

0.2.1

Author

Jun Woong (woong.jun at gmail.com)

Date
last modified on 2013-04-23

1.1 Introduction

This document specifies the Double-Linked List Library which belongs to the C Data
Structure Library. The basic structure is from David Hanson’s book, "C Interfaces and
Implementations." | modified the original implementation to make it more appropriate for
my other projects, to speed up operations and to enhance its readibility; for example a
prefix is used more strictly in order to avoid the user namespace pollution.

Since the book explains its design and implementation in a very comprehensive way,
not to mention the copyright issues, it is nothing but waste to repeat it here, so | finish
this document by giving introduction to the library; how to use the facilities is deeply
explained in files that define them.

The Doubly-Linked List Library reserves identifiers starting with d1ist_ and DLIS-
T_, and imports the Assertion Library (which requires the Exception Handling Library)
and the Memory Management Library.

2 C Data Structure Library: Doubly-Linked List Library

1.2 How to Use The Library

The Doubly-Linked List Library is a typical implementation of a list in which nodes have
two pointers to their next and previous nodes; a list with a unidirectional pointer is im-
plemented in the List Library. The storage used to maintain a list itself is managed by
the library, but any storage allocated for data stored in nodes should be managed by a
user program.

Similarly for other data structure libraries, use of the Doubly-Linked List Library follows
this sequence: create, use and destroy. Except for functions to inspect lists, all other
functions do one of them in various ways.

As oppsed to a singly-linked list, a doubly-linked list enables its nodes to be accessed
randomly. To speed up such accesses, the library is revised from the original version
so that a list remembers which node was last accessed. If a request is made to access
a node that is next or previous to the remembered node, the library locates it starting
from the remembered node. This is from observation that traversing a list from the head
or the tail in sequence occurs frequently in many programs and can make a program
making heavy use of lists run almost 3 times faster. Therefore, for good performance of
your program, it is highly recommended that lists are traversed sequentially whenever
possible. Do not forget that the current implementation requires the library to locate the
desired node from the head or the tail for other types of accesses (that is, any access
to a node that is not immediately next or previous to a remembered node).

1.3 Boilerplate Code

Using a list starts with creating one. The simplest way to do it is to call dlist_new(). dlist-
_new() returns an empty list, and if it fails to allocate storage for the list, an exception
mem_exceptfail is raised rather than returning a null pointer. All functions that
allocate storage signal a shortage of memory via the exception; no null pointer returned.
There is another function to create a list: dlist_list() that accepts a sequence of data and
creates a list containing them in each node.

Once a list has been created, a new node can be inserted in various ways (dlist_-
add(), dlist_addhead() and dlist_addtail()) and an existing node can be removed from
a list also in various ways (dlist_remove(), dlist_remhead() and dlist_remtail()). You
can inspect the data of a node (dlist_get()) or replace it with new one (dlist_put()). In
addition, you can find the number of nodes in a list (dlist_length()) or can rotate (or shift)
a list (dlist_shift()). For an indexing sheme used when referring to existing nodes, see
dlist_get(). For that used when referring to a position into which a new node inserted,
see dlist_add().

dlist_free() destroys a list that is no longer necessary, but note that any storage that is
allocated by a user program does not get freed with it; dlist_free() only returns back the
storage allocated by the library.

As an example, the following code creates a list and stores input characters into each
node until EOF encountered. After read, it copies characters in nodes to continuous
storage area to construct a string and prints the string.

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

1.4 Future Directions 3

int c;
char *p, *q;
dlist_t »*mylist;

mylist = dlist_new();

while ((c = getc(stdin)) != EOF) {
MEM_NEW (p) ;
*p o= ¢

dlist_addtail (mylist, p);

n = dlist_length(mylist);

p = MEM_ALLOC (n+1);

for (1 = 0; i < n; i++) {
p = dlist_get (mylist, 1i);
ali] = =p;

MEM_FREE (p) ;
qlil = "\o0";
dlist_free (&mylist);

puts (q) ;

where MEM_NEW(), MEM_ALLOC() and MEM_FREE() come from the Memory -
Management Library.

Note that, before adding a node to a list, unique storage to contain a character is al-
located with MEM_NEW() and this storage is returned back by MEM_FREE() while
copying characters into an allocated array.

1.4 Future Directions

No future change on this library planned yet.

1.5 Contact Me

Visit http://code.woong.org to get the lastest version of this library. Only a
small portion of my homepage (http://www.woong.org)is maintained in English,
thus one who is not good at Korean would have difficulty when navigating most of other
pages served in Korean. If you think the information you are looking for is on pages
written in Korean, do not hesitate to send me an email to ask for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and | will reply as soon as possible.

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

http://code.woong.org
http://www.woong.org

4 C Data Structure Library: Doubly-Linked List Library

1.6 Copyright

| do not wholly hold the copyright of this library; it is mostly held by David Hanson as
stated in his book, "C: Interfaces and Implementations:"

Copyright (c) 1994,1995,1996,1997 by David R. Hanson.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

For the parts | added or modified, the following applies:
Copyright (C) 2009-2013 by Jun Woong.

This package is a doubly-linked list implementation by Jun Woong. The implementation
was written so as to conform with the Standard C published by ISO 9899:1990 and ISO
9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRA-
NTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY -
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTE-
RRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

dlist.c

Source for Doubly-Linked List Library

dlist.h
Header for Doubly-Linked List Library (CDSL)

File Index

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

Chapter 3

File Documentation

3.1 dlist.c File Reference

Source for Doubly-Linked List Library.

#include <limits.h>#include <stddef.h> #include <stdarg.-
h> #include "cbl/assert.h" #include "cbl/memory.h" #include
"dlist.h" Include dependency graph for dlist.c:

Functions

« dlist_t () dlist_new (void)
creates an empty new list.
« dlist_t () dlist_list (void xdata,...)
constructs a new list using a given sequence of data.
« void() dlist_free (dlist_t *xpdlist)
destroys a list.
* long() dlist_length (const dlist_t *dlist)
returns the length of a list.
+ void x() dlist_get (dlist_t *dlist, long i)
retrieves data stored in the 1 —th node in a list.
+ void *() dlist_put (dlist_t *dlist, long i, void *data)
replaces data stored in a node with new given data.
« void x() dlist_addtail (dlist_t *dlist, void xdata)
adds a node after the last node.
+ void *() dlist_addhead (dlist_t xdlist, void xdata)
adds a new node before the head node.
+ void *() dlist_add (dlist_t *dlist, long pos, void xdata)
adds a new node to a specified position in a list.
« void *() dlist_remove (dlist_t xdlist, long i)

8 File Documentation

removes a node with a specific index from a list.
+ void *() dlist_remtail (dlist_t xdlist)

removes the last node of a list.
+ void x() dlist_remhead (dlist_t xdlist)

removes the first node from a list.
« void() dlist_shift (dlist_t *dlist, long n)
shifts a list to right or left.

3.1.1 Detailed Description

Source for Doubly-Linked List Library.

3.1.2 Function Documentation
3.1.21 voidx() dlist_add (dlist_t « dlist, long pos, void x data)

adds a new node to a specified position in a list.

dlist_add() inserts a new node to a position specified by pos. The position is interpreted
as follows: (5 nodes assumed to be in a list)

1 2 3 4 5 6 positive position values
+—+ +—+ +—+ +—+ +—+
ol==1 I==1 I==1 I==1 1
+—+ +—+ -+ =+ -+
-5 -4 -3 -2 -1 0 non-positive position values

Non-positive positions are useful when to locate without knowing the length of a list. If
a list is empty both 0 and 1 are the valid values for a new node. Note that pos - (dlist_-
length()+1) gives a non-negative value for a positive pos, and pos + (dlist_length()+1)
gives a positive value for a negative pos.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list to which new node inserted
in pos | position for new node
in data | data for new node
Returns

data for new node

Here is the call graph for this function:

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

3.1 dlist.c File Reference 9

31.2.2 voids«() dlist_addhead (dlist_t dlist, void data)

adds a new node before the head node.

dlist_addhead() inserts a hew node before the head node; the new node will be the
head node. dlist_addhead() is equivalent to dlist_add() with 1 given for the position.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list to which new node to be inserted
in data | data for new node
Returns

data for new node

Here is the call graph for this function:

Here is the caller graph for this function:

3.1.2.3 void«() dlist_addtail (dlist_t = dlist, void * data)

adds a node after the last node.

dlist_addtail() inserts a new node after the last node; the index for the new node will be
N if there are N nodes before the insertion. If a list is empty, dlist_addtail() and dlist_-
addhead() do the same job. dlist_addtail() is equivalent to dlist_add() with 0 given for
the position.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list to which new node to be inserted
in data | data for new node
Returns

data for new node

Here is the caller graph for this function:

3.1.2.4 void() dlist_free (dlist_t xx pdlist)

destroys a list.

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

10 File Documentation

dlist_free() destroys a list by deallocating storages for each node and for the list itself.
After the call, the list does not exist (do not confuse this with an empty list). If pd1list
points to a null pointer, an assertion in dlist_free() fails; it's a checked error.

Possible exceptions: assert_exceptfail

Unchecked error: pointer to foreign data structure given for plist

Parameters

| in, out] pdiist | pointer to list to destroy

Returns

nothing

3.1.25 voidx() dlist_get (dlist_t * dlist, longi)

retrieves data stored in the i—th node in a list.

dlist_get() brings and return data in the 1 —th node in a list. The first node has the index
0 and the last has n-1 when there are n nodes in a list.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list from which data is to be retrieved
in i | index for node
Returns

data retrieved

3.1.2.6 long() dlist_length (const dlist_t * dlist)

returns the length of a list.
dlist_length() returns the length of a list, the number of nodes in it.
Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters

| in | dlist | list whose length to be returned

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

3.1 dlist.c File Reference 11

Returns

length of list (non-negative)

3.1.2.7 dlist_t«() dlist_list (void * data, ...)

constructs a new list using a given sequence of data.

dlist_list() constructs a doubly-linked list whose nodes contain a sequence of data given
as arguments; the first argument is stored in the head (first) node, the second argument
in the second node and so on. There should be a way to mark the end of the argument
list, which a null pointer is for. Any argument following a null pointer argument is not
invalid, but ignored.

Possible exceptions: mem_exceptfail

Unchecked errors: none

Warning

Calling dlist_list() with one argument, a null pointer, is not treated as an error. Such
a call request an empty list as calling dlist_new().

Parameters
in data | data to store in head node of new list
in ... | other data to store in new list

Returns

new list containing given sequence of data

Here is the call graph for this function:

3128 dlist_t«() dlist_new (void)

creates an empty new list.
dlist_new() creates an empty list and returns it for further use.
Possible exceptions: mem_exceptfail

Unchecked errors: none

Returns

empty new list

Here is the caller graph for this function:

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

12 File Documentation

3.1.2.9 void«() dlist_put (dlist_t « dlist, long i, void * data)

replaces data stored in a node with new given data.

dlist_put() replaces the data stored in the 1 —th node with new given data and retrieves
the old data. For indexing, see dlist_get().

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list whose data to be replaced
in i | index for noded
in data | new data for substitution
Returns
old data

3.1.2.10 void«() dlist_remhead (dlist_t * dlist)

removes the first node from a list.

dlist_remhead() removes the first (head) node from a list. dlist_remhead() is equivalent
to dlist_remove() with 0 for the position.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters

|in, out] dlist | list from which first node to be removed

Returns

data of deleted node

Here is the call graph for this function:

3.1.2.11 voidx() dlist_remove (dlist_t = dlist, long i)

removes a node with a specific index from a list.
dlist_remove() removes the i —th node from a list. For indexing, see dlist_get().
Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

3.1 dlist.c File Reference 13

Parameters
in, out dlist | list from which node to be removed
in i | index for node to remove
Returns

data of removed node

31212 void() dlist_remtail (dlist_t = dlist)

removes the last node of a list.

dlist_remtail() removes the last (tail) node of a list. dlist_remtail() is equivalent to dlist_-
remove() with dlist_length()-1 for the index.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters

|in, out]| dlist [list from which last node to be removed

Returns

data of deleted node

Here is the caller graph for this function:

3.1.2.13 void() dlist_shift (dlist_t x dlist, longn)

shifts a list to right or left.

dlist_shift() shifts a list to right or left according to the value of n. A positive value
indicates shift to right; for example shift by 1 means to make the tail node become the
head node. Similarly, a negative value indicates shift to left; for example shift by -1
means to make the head node become the tail node.

The absolute value of the shift distance specified by n should be equal to or less than
the length of a list. For exmple, dlist_shift(..., 7) or dlist_shift(..., -7) is not allowed when
there are only 6 nodes in a list. In such a case, dlist_shift(..., 6) or dlist_shift(..., -6) has
no effect as dlist_shift(..., 0) has none.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Warning

Note that it is a list itself that dlist_shift() shifts, not the head pointer of a list.

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

14 File Documentation

Parameters
in, out dlist | list to shift
in n | direction and distance of shift
Returns
nothing

3.2 dlist.h File Reference

Header for Doubly-Linked List Library (CDSL)

This graph shows which files directly or indirectly include this file:

Typedefs

« typedef struct dlist_t dlist_t

represents a doubly-linked list.

Functions
list creating functions:

« dlist_t * dlist_new (void)
creates an empty new list.
« dlist_t * dlist_list (void x,...)
constructs a new list using a given sequence of data.

list destroying functions:

« void dlist_free (dlist_t *x)
destroys a list.

node adding/deleting functions:

« void * dlist_add (dlist_t *, long, void x)

adds a new node to a specified position in a list.
« void * dlist_addhead (dlist_t *, void *)

adds a new node before the head node.
« void * dlist_addtail (dlist_t *, void *)

adds a node after the last node.
« void * dlist_remove (dlist_t *, long)

removes a node with a specific index from a list.
« void * dlist_remhead (dlist_t *)

removes the first node from a list.
« void * dlist_remtail (dlist_t *)

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

3.2 dlist.h File Reference 15

removes the last node of a list.

data/information retrieving functions:

* long dlist_length (const dlist_t)
returns the length of a list.
+ void * dlist_get (dlist_t *, long)
retrieves data stored in the i—th node in a list.
+ void * dlist_put (dlist_t *, long, void x)
replaces data stored in a node with new given data.

list handling functions:

+ void dlist_shift (dlist_t *, long)
shifts a list to right or left.

3.2.1 Detailed Description

Header for Doubly-Linked List Library (CDSL) Documentation for Doubly-Linked List
Library (CDSL)

3.2.2 Function Documentation
3.2.2.1 voidx dlist_add (dlist_t « dlist, long pos, void x data)

adds a new node to a specified position in a list.

dlist_add() inserts a new node to a position specified by pos. The position is interpreted
as follows: (5 nodes assumed to be in a list)

1 2 3 4 5 6 positive position values
+—+ =+ =+ -+ +—+
Fol==1 I==1 I==1 I==11
+—+ =+ =+ -+ -+
-5 -4 -3 -2 -1 0 non-positive position values

Non-positive positions are useful when to locate without knowing the length of a list. If
a list is empty both 0 and 1 are the valid values for a new node. Note that pos - (dlist_-
length()+1) gives a non-negative value for a positive pos, and pos + (dlist_length()+1)
gives a positive value for a negative pos.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list to which new node inserted
in pos | position for new node
in data | data for new node

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

16 File Documentation

Returns

data for new node

Here is the call graph for this function:

3.2.2.2 voidx dlist_addhead (dlist_t * dlist, void x data)

adds a new node before the head node.

dlist_addhead() inserts a new node before the head node; the new node will be the
head node. dlist_addhead() is equivalent to dlist_add() with 1 given for the position.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list to which new node to be inserted
in data | data for new node
Returns

data for new node

Here is the call graph for this function:

Here is the caller graph for this function:

3.2.2.3 voidx dlist_addtail (dlist_t * dlist, void x data)

adds a node after the last node.

dlist_addtail() inserts a new node after the last node; the index for the new node will be
N if there are N nodes before the insertion. If a list is empty, dlist_addtail() and dlist_-
addhead() do the same job. dlist_addtail() is equivalent to dlist_add() with 0 given for
the position.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list to which new node to be inserted
in data | data for new node
Returns

data for new node

Here is the caller graph for this function:

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

3.2 dlist.h File Reference 17

3.22.4 void dlist_free (dlist_t «x pdlist)

destroys a list.

dlist_free() destroys a list by deallocating storages for each node and for the list itself.
After the call, the list does not exist (do not confuse this with an empty list). If pdlist
points to a null pointer, an assertion in dlist_free() fails; it's a checked error.

Possible exceptions: assert_exceptfail

Unchecked error: pointer to foreign data structure given for plist

Parameters

| in, out | pdiist | pointer to list to destroy

Returns

nothing

3.2.2.5 voidx dlist_get (dlist_t « dlist, long i)

retrieves data stored in the i—th node in a list.

dlist_get() brings and return data in the 1 —th node in a list. The first node has the index
0 and the last has n-1 when there are n nodes in a list.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list from which data is to be retrieved
in i| index for node
Returns

data retrieved

3.2.2.6 longdlist_length (const dlist_t x dlist)

returns the length of a list.
dlist_length() returns the length of a list, the number of nodes in it.
Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

18 File Documentation

Parameters
| in | dlist | list whose length to be returned

Returns

length of list (non-negative)

3.2.2.7 dlist_tx dlist_list (void * data, ...)

constructs a new list using a given sequence of data.

dlist_list() constructs a doubly-linked list whose nodes contain a sequence of data given
as arguments; the first argument is stored in the head (first) node, the second argument
in the second node and so on. There should be a way to mark the end of the argument
list, which a null pointer is for. Any argument following a null pointer argument is not
invalid, but ignored.

Possible exceptions: mem_exceptfail

Unchecked errors: none

Warning

Calling dlist_list() with one argument, a null pointer, is not treated as an error. Such
a call request an empty list as calling dlist_new().

Parameters
in data | data to store in head node of new list
in ... | other data to store in new list

Returns

new list containing given sequence of data

Here is the call graph for this function:

3.2.2.8 dlist_t« dlist_new (void)

creates an empty new list.
dlist_new() creates an empty list and returns it for further use.
Possible exceptions: mem_exceptfail

Unchecked errors: none

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

3.2 dlist.h File Reference 19

Returns

empty new list

Here is the caller graph for this function:

3.2.2.9 voidx dlist_put (dlist_t * dlist, long i, void * data)

replaces data stored in a node with new given data.

dlist_put() replaces the data stored in the 1 —th node with new given data and retrieves
the old data. For indexing, see dlist_get().

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list whose data to be replaced
in i | index for noded
in data | new data for substitution
Returns
old data

3.2.2.10 voidx dlist_remhead (dlist_t x dlist)

removes the first node from a list.

dlist_remhead() removes the first (head) node from a list. dlist_remhead() is equivalent
to dlist_remove() with 0 for the position.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters

| in, out| diist | list from which first node to be removed

Returns

data of deleted node

Here is the call graph for this function:

3.2.2.11 voidx dlist_remove (dlist_t x dlist, long i)

removes a node with a specific index from a list.

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

20 File Documentation

dlist_remove() removes the i—th node from a list. For indexing, see dlist_get().
Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters
in, out dlist | list from which node to be removed
in i | index for node to remove
Returns

data of removed node

3.2.2.12 voidx dlist_remtail (dlist_t x dlist)

removes the last node of a list.

dlist_remtail() removes the last (tail) node of a list. dlist_remtail() is equivalent to dlist_-
remove() with dlist_length()-1 for the index.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Parameters

| in, out| dlist| list from which last node to be removed

Returns

data of deleted node

Here is the caller graph for this function:

3.2.2.13 void dlist_shift (dlist_t x dlist, long n)

shifts a list to right or left.

dlist_shift() shifts a list to right or left according to the value of n. A positive value
indicates shift to right; for example shift by 1 means to make the tail node become the
head node. Similarly, a negative value indicates shift to left; for example shift by -1
means to make the head node become the tail node.

The absolute value of the shift distance specified by n should be equal to or less than
the length of a list. For exmple, dlist_shift(..., 7) or dlist_shift(..., -7) is not allowed when
there are only 6 nodes in a list. In such a case, dlist_shift(..., 6) or dlist_shift(..., -6) has
no effect as dlist_shift(..., 0) has none.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for d1ist

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

3.2 dlist.h File Reference

Warning

Note that it is a list itself that dlist_shift() shifts, not the head pointer of a list.

Parameters
in, out dlist | list to shift
in n | direction and distance of shift
Returns
nothing

Generated on Tue Apr 23 2013 22:31:48 for The Doubly-Linked List Library by Doxygen

	C Data Structure Library: Doubly-Linked List Library
	Introduction
	How to Use The Library
	Boilerplate Code
	Future Directions
	Contact Me
	Copyright

	File Index
	File List

	File Documentation
	dlist.c File Reference
	Detailed Description
	Function Documentation
	dlist_add
	dlist_addhead
	dlist_addtail
	dlist_free
	dlist_get
	dlist_length
	dlist_list
	dlist_new
	dlist_put
	dlist_remhead
	dlist_remove
	dlist_remtail
	dlist_shift

	dlist.h File Reference
	Detailed Description
	Function Documentation
	dlist_add
	dlist_addhead
	dlist_addtail
	dlist_free
	dlist_get
	dlist_length
	dlist_list
	dlist_new
	dlist_put
	dlist_remhead
	dlist_remove
	dlist_remtail
	dlist_shift

