
The Exception Handling Library
0.2.1

Generated by Doxygen 1.5.8

Mon Jan 24 01:12:35 2011

Contents

1 C Basic Library: Exception Handling Library 1

1.1 Introduction . 1

1.2 How to Use The Library . 2

1.2.1 Some Caveats . 3

1.2.2 Improvements . 4

1.3 Boilerplate Code . 4

1.4 Future Directions . 5

1.4.1 Stack Traces . 5

1.5 Contact Me . 5

1.6 Copyright . 6

2 Todo List 7

3 File Index 9

3.1 File List . 9

4 File Documentation 11

4.1 except.c File Reference . 11

4.1.1 Detailed Description . 12

4.1.2 Function Documentation . 12

4.1.2.1 except_raise . 12

4.2 except.h File Reference . 13

4.2.1 Detailed Description . 14

4.2.2 Define Documentation . 14

4.2.2.1 EXCEPT_ELSE 14

4.2.2.2 EXCEPT_END 15

ii CONTENTS

4.2.2.3 EXCEPT_EXCEPT 15

4.2.2.4 EXCEPT_FINALLY 15

4.2.2.5 EXCEPT_RETURN 16

4.2.2.6 EXCEPT_TRY 16

4.2.3 Enumeration Type Documentation 17

4.2.3.1 "@0 . 17

4.2.4 Function Documentation . 17

4.2.4.1 except_raise . 17

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

Chapter 1

C Basic Library: Exception
Handling Library

Version:

0.2.1

Author:

Jun Woong (woong.jun at gmail.com)

Date:

last modified on 2011-01-24

1.1 Introduction

This document specifies the Exception Handling Library which belongs to the C Basic
Library. The basic structure is from David Hanson’s book, "C Interfaces and Imple-
mentations." I modified the original implementation to make it more appropriate for my
other projects, to conform to the C standard and to enhance its readibility; for example
a prefix is used more strictly in order to avoid the user namespace pollution.

Since the book explains its design and implementation in a very comprehensive way,
not to mention the copyright issues, it is nothing but waste to repeat it here, so I finish
this document by giving typical exception-handing constructs with short explanation
and emphasis on crucial issues. Some improvements to support C99 is also explained.
How to use the facilities is deeply explained in files that define them.

The Exception Handling Library reserves identifiers starting with except_ and
EXCEPT_, and imports the Assertion Library.

2 C Basic Library: Exception Handling Library

1.2 How to Use The Library

The followin constrcut shows how a typical TRY-EXCEPT statement looks.

EXCEPT_TRY
S;

EXCEPT_EXCEPT(e1)
S1;

EXCEPT_EXCEPT(e2)
S2;

EXCEPT_ELSE
S3;

EXCEPT_END;

EXCEPT_TRY starts a TRY-EXCEPT or TRY-FINALLY statement. The statements
following EXCEPT_TRY (referred to as S in this example) are executed, and if an ex-
ception is occurred during the execution the control moves to one of EXCEPT clauses
with a matching exception or the ELSE clause. The statements Sn under the matched
EXCEPT clause or ELSE clause are executed and the control moves to the next state-
ment (if any) to EXCEPT_END.

EXCEPT_TRY
S

EXCEPT_ELSE
S1

EXCEPT_END;

A constrcut without any EXCEPT clause is useful when catching all exceptions raised
during execution of S in a uniform way. If other exception handers are established
during execution of S only uncaught exceptions there move the control to the ELSE
clause above. For example, any uncaught exception with no recovery (e.g., assertion
failures or memory allocation failures) can be handled as follows in the main function.

int main(void)
{

EXCEPT_TRY
real_main();

EXCEPT_ELSE
fprintf(stderr,

"An internal error occurred with no way to recover.\n"
"Please report this error to somebody@somewhere.\n\n");

EXCEPT_RERAISE;
EXCEPT_END;

return 0;
}

A TRY-FINALLY statement looks like:

EXCEPT_TRY
S;

EXCEPT_FINALLY
S1;

EXCEPT_END;

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

1.2 How to Use The Library 3

The statements following EXCEPT_FINALLY are executed regardless of occurrence
of an exception, so if a kind of clean-up like closing open files or freeing allocated
storages is necessary to be performed unconditionally, S1 is its right place. If the
exception caught by a TRY-FINALLY statement needs to be also handled by a TRY-
EXCEPT statement EXCEPT_RERAISE raises it again to give the previous handler (if
any) a chance to handle it.

Note that each group of the statements, say, S, S1 and so on, constitutes an independent
block; opening or closing braces are hidden in EXCEPT_TRY, EXCEPT_EXCEPT,
EXCEPT_FINALLY and EXCEPT_END. Therefore variables declared in a block, say,
S is not visible to another block, say, S1.

And even if not explicitly specified in Hanson’s book, it is possible to construct an
exception handling statement which has both EXCEPT and FINALLY clauses, which
looks like:

EXCEPT_TRY
S;

EXCEPT_EXCEPT(e)
Se;

EXCEPT_FIANLLY
Sf;

EXCEPT_END;

Looking into the implementation by combining those macros explains how it works.
Finding when it is useful is up to its users.

1.2.1 Some Caveats

Exception handling mechanism given here is implemented using a non-local jump pro-
vided by <setjmp.h>. Thus every restriction applied to <setjmp.h> also applies to
this library. For example, there is no guarantee that an updated auto variable preserves
its last stored value if the update done between setjmp() and longjmp(). For example,

{
int i;

EXCEPT_TRY
i++;
S;

EXCEPT_EXCEPT(e1)
S1;

EXCEPT_TRY;
}

If an exception e1 occurs, which moves the control to S1, it is unknown what the value
of i is in the EXCEPT clause above. A way to walk around this problem is to declare
i as volatile or static. (See the manpage for setjmp() and longjmp().)

At the first blush, this restriction seems too restrictive, but not quite. The restric-
tion applies only to those non-volatile variables with automatic storage duration and
belonged to the function containing EXCEPT_TRY (which has setjmp() in it), and
only when they are modified between setjmp() (EXCEPT_TRY) and corresponding
longjmp() (except_raise()).

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

4 C Basic Library: Exception Handling Library

One more thing to remember is that the ordinary return statement does not work
in the statements S above because it does not know anything about maintaining the
exception stack. Inside S, the exception frame has already been pushed to the exception
stack. Returning from it without adjusting the stack by popping the current frame spoils
the exception handling mechanism, which results in undefined behavior. EXCEPT_-
RETURN is provided for this purpose. It does the same thing as the ordinary return
statement except that it adjusts the exception stack properly. Also note that EXCEPT_-
RETURN is not necessary in a EXCEPT, ELSE or FINALLY clause since entering those
cluases entails popping the current frame from the stack.

In general, it is said that recovery from an erroneous situation gets easier if you have a
way to handle it with an exception and its handler. In practice, with the implementation
using a non-local jump facility like this library, however, that is not always true. If a
program manages resources like allocated memory and open file pointers in a compli-
cated fashion and an exception can be raised at a deeply nested level, it is very likely
for you to lose control over them. In addition to it, keeping internal data structures con-
sistent is also a problem. If an exception can be triggered during modifying fileds of an
internal data structure, it is never a trivia to guarantee consistency of that. Therefore, an
exception handling facility this library provides is in fact best suited for handling in one
place various problematic circumstances and then terminating the program’s execution
almost immediately. If you would like your code to be tolerant to an exceptional case
by, for example, making it revert to an inferior but reliable approach, you have to keep
these facts in your mind.

1.2.2 Improvements

The diagnostic message printed when an assertion failed changed in C99 to include
the name of a function in which it failed. This can be readily attained with a newly
introduced predefined identifier __func__. To provide more useful information, if an
implementation claims to support C99 by defining the macro __STDC_VERSION_-
_ properly, the library also includes the function name when making up the message
output when an uncaught exception detected. For the explanation on __func__ and
__STDC_VERSION__, see ISO/IEC 9899:1999.

1.3 Boilerplate Code

To show a bolierplate code, suppose that a module named "mod" defines and may
raise exceptions named mod_exceptfail and mod_exceptmem, and that code
invoking the module is expected to install an exception handler for that exception.
Now implementing the module "mod" looks in part like:

const except_t mod_exceptfail = { "Some operation failed" };
const except_t mod_exceptmem = { "Memory operation failed" };

...

int mod_oper(int arg)
{

...

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

1.4 Future Directions 5

if (!p)
EXCEPT_RAISE(mod_exceptfail);

else if (p != q)
EXCEPT_RAISE(mod_exceptmem);

...
}

where the names of exceptions and the contents of strings used as initializers are up to
an user. The string is printed out when the corresponding exception is raised but not
caught. By installing an exception handler with a TRY-EXCEPT construct, code that
invokes mod_oper() can handle exceptions mod_oper() may raise:

EXCEPT_TRY
result = mod_oper(value);
...

EXCEPT_EXCEPT(mod_exceptfail)
fprintf(stderr, "program: some operation failed; no way to recover\n");
EXCEPT_RERAISE;

EXCEPT_EXCEPT(mod_exceptmem)
fprintf(stderr, "program: memory allocation failed; internal buffer used\n");
... prepare internal buffer and retry ...

EXCEPT_END

Note that exceptions other than mod_exceptfail and mod_exceptmem are un-
caught by this handler and handed to an outer handler if any.

1.4 Future Directions

1.4.1 Stack Traces

The current implementation provides no information about the execution stack of a
program when an exception occurred leads it to abnormal termination. This imposes
a burden on programmers since they have to track function calls by themselves to
pinpoint the problem. Thus, showing stack traces on an uncaught exception would
be useful especially when they include enough information like callers’ names, calling
sites and arguments.

1.5 Contact Me

Visit http://project.woong.org to get the latest version of this library. Only
a small portion of my homepage (http://www.woong.org) is maintained in En-
glish, thus one who is not good at Korean would have difficulty when navigating most
of other pages served in Korean. If you think the information you are looking for is on
pages written in Korean you cannot read, do not hesitate to send me an email asking
for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and then I will reply as soon as possible.

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

http://project.woong.org
http://www.woong.org

6 C Basic Library: Exception Handling Library

1.6 Copyright

I do not wholly hold the copyright of this library; it is mostly held by David Hanson as
stated in his book, "C: Interfaces and Implementations:"

Copyright (c) 1994,1995,1996,1997 by David R. Hanson.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

For the parts I added or modified, the following applies:

Copyright (C) 2009-2011 by Jun Woong.

This package is an exception handling facility implementation by Jun Woong. The
implementation was written so as to conform with the Standard C published by ISO
9899:1990 and ISO 9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

Chapter 2

Todo List

8 Todo List

Global except_raise Improvements are possible and planned:

• it would be useful to show stack traces when an uncaught exception leads to
abortion of a program. The stack traces should include as much information
as possible, for example, names of caller functions, calling sites (file name,
function name and line number) and arguments.

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

except.c (Source for Exception Handling Library (CBL)) 11
except.h (Documentation for Exception Handling Library (CBL)) 13

10 File Index

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

Chapter 4

File Documentation

4.1 except.c File Reference

Source for Exception Handling Library (CBL).

#include <stddef.h>

#include <setjmp.h>

#include <stdio.h>

#include <stdlib.h>

#include "cbl/assert.h"

#include "except.h"

Include dependency graph for except.c:

Functions

• void() except_raise (const except_t ∗e, const char ∗file, int line)
raises an exception and set its information properly.

Variables

• except_frame_t ∗ except_stack = NULL

12 File Documentation

stack for handling nested exceptions.

4.1.1 Detailed Description

Source for Exception Handling Library (CBL).

4.1.2 Function Documentation

4.1.2.1 void() except_raise (const except_t ∗ e, const char ∗ file, int line)

raises an exception and set its information properly.

EXCEPT_RAISE and EXCEPT_RERAISE macros call except_raise() with __-
FILE__ and __LINE__ predefined macros (and __func__ if C99 supported) for
the file and line parameters. So in general there is little chance to call except_-
raise() directly in application code.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for e

Parameters:

← e exception to raise

← file file name where exception occurred

← func function name where exception occurred (if C99 supported)

← line line number where exception occurred

Returns:

except_raise() cannot return anything

Todo

Improvements are possible and planned:

• it would be useful to show stack traces when an uncaught exception leads to
abortion of a program. The stack traces should include as much information
as possible, for example, names of caller functions, calling sites (file name,
function name and line number) and arguments.

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

4.2 except.h File Reference 13

4.2 except.h File Reference

Documentation for Exception Handling Library (CBL).

#include <setjmp.h>

Include dependency graph for except.h:

This graph shows which files directly or indirectly include this file:

Data Structures

• struct except_t
• struct except_frame_t

Defines

• #define EXCEPT_RAISE(e) except_raise(&(e), __FILE__, __LINE__)

raises exception e.

• #define EXCEPT_RERAISE except_raise(except_frame.exception, except_-
frame.file, except_frame.line)

raises the exception again that has been raised most recently.

• #define EXCEPT_RETURN switch(except_stack=except_stack → prev, 0) de-
fault: return

returns to the caller function within a TRY-EXCEPT statement.

• #define EXCEPT_TRY

starts a TRY statement.

• #define EXCEPT_EXCEPT(e)

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

14 File Documentation

starts an EXCEPT(e) clause.

• #define EXCEPT_ELSE
starts an ELSE clause.

• #define EXCEPT_FINALLY
starts a FINALLY clause.

• #define EXCEPT_END
ends a TRY-EXCEPT or TRY-FINALLY statement.

Enumerations

• enum { EXCEPT_ENTERED = 0, EXCEPT_RAISED, EXCEPT_HANDLED,
EXCEPT_FINALIZED }

Functions

exception raising functions:

• void except_raise (const except_t ∗, const char ∗, int)
raises an exception and set its information properly.

Variables

• except_frame_t ∗ except_stack
stack for handling nested exceptions.

4.2.1 Detailed Description

Documentation for Exception Handling Library (CBL).

Header for Exception Handling Library (CBL).

4.2.2 Define Documentation

4.2.2.1 #define EXCEPT_ELSE

Value:

if (except_flag == EXCEPT_ENTERED) \
except_stack = except_stack->prev; \

} else { \
except_flag = EXCEPT_HANDLED;

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

4.2 except.h File Reference 15

starts an ELSE clause.

If there is no matched EXCEPT clause for a raised exception the control moves to the
statements following the ELSE clause.

4.2.2.2 #define EXCEPT_END

Value:

if (except_flag == EXCEPT_ENTERED) \
except_stack = except_stack->prev; \

} \
if (except_flag == EXCEPT_RAISED) \

EXCEPT_RERAISE; \
}

ends a TRY-EXCEPT or TRY-FINALLY statement.

If a raised exception is not handled by the current handler, it will be handled by the
previous handler if any.

4.2.2.3 #define EXCEPT_EXCEPT(e)

Value:

if (except_flag == EXCEPT_ENTERED) \
except_stack = except_stack->prev; \

} else if (except_frame.exception == &(e)) { \
except_flag = EXCEPT_HANDLED;

starts an EXCEPT(e) clause.

When an exception e is raised, its following statements are executed. Finishing them
moves the control to the end of the TRY statement.

4.2.2.4 #define EXCEPT_FINALLY

Value:

if (except_flag == EXCEPT_ENTERED) \
except_stack = except_stack->prev; \

} \
{ \

if (except_flag == EXCEPT_ENTERED) \
except_flag = EXCEPT_FINALIZED;

starts a FINALLY clause.

It is used to construct a TRY-FINALLY statement, which is useful when some clean-up
is necessary before exiting the TRY-FINALLY statement; the statements under the FI-
NALLY clause are executed whether or not an exception occurs. EXCEPT_RERAISE
macro can be used to hand over the not-yet-handled exception to the previous handler.

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

16 File Documentation

Warning:

Remember that, since raising an exception pops up the execption stack, re-raising
an exception in a FINALLY clause has the effect to move the control to the
outer (previous) handler. Also note that, even if not explicitly specified, a TRY-
EXCEPT- FINALLY statement (there are both EXCEPT and FINALLY clauses)
is possible and works as expected.

4.2.2.5 #define EXCEPT_RETURN switch(except_stack=except_stack→ prev,
0) default: return

returns to the caller function within a TRY-EXCEPT statement.

In order to maintain the stack handling nested exceptions, the ordinary return state-
ment should be avoided in statements (referred to as S below; see the explanation for
EXCEPT_TRY) following EXCEPT_TRY. Because return has no idea about the ex-
ception frame, retruning without using EXCEPT_RETURN from S spoils the exception
stack. EXCEPT_RETURN adjusts the stack properly by popping the current exception
frame before returning to the caller.

Warning:

Note that the current exception frame is popped when an exception occurs during
execution of S and before the control moves to one of EXCEPT, ELSE and FI-
NALLY clauses, which means using EXCEPT_RETURN there is not allowed since
it affects the previous, not the current, exception frame.

4.2.2.6 #define EXCEPT_TRY

Value:

{ \
volatile int except_flag; \
/* volatile */ except_frame_t except_frame; \
except_frame.prev = except_stack; \
except_stack = &except_frame; \
except_flag = setjmp(except_frame.env); \
if (except_flag == EXCEPT_ENTERED) {

starts a TRY statement.

Statements (referred to as S hereafter) whose exception is to be handled in EXCEPT,
ELSE or FINALLY clause follow.

Warning:

Do not forget using EXCEPT_RETURN when returning from S. See EXCEPT_-
RETURN for more details. Besides, The TRY-EXCEPT/FINALLY statement uses
the non-local jump mechanism provided by <setjmp.h>, which means any restric-
tion applied to <setjmp.h> also applies to the TRY-EXCEPT/FINALLY state-
ment. For example, the standard does not guarantee that an automatic non-volatile

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

4.2 except.h File Reference 17

variable belonging to the function which contains setjmp() preserves its last stored
value when it is updated between a call to setjmp() and a call to longjmp() with the
same jmp_buf.

4.2.3 Enumeration Type Documentation

4.2.3.1 anonymous enum

Enumerator:

EXCEPT_ENTERED exception handling started and no exception raised yet

EXCEPT_RAISED exception raised and not handled yet

EXCEPT_HANDLED exception handled

EXCEPT_FINALIZED exception finalized

4.2.4 Function Documentation

4.2.4.1 void except_raise (const except_t ∗ e, const char ∗ file, int line)

raises an exception and set its information properly.

EXCEPT_RAISE and EXCEPT_RERAISE macros call except_raise() with __-
FILE__ and __LINE__ predefined macros (and __func__ if C99 supported) for
the file and line parameters. So in general there is little chance to call except_-
raise() directly in application code.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for e

Parameters:

← e exception to raise

← file file name where exception occurred

← func function name where exception occurred (if C99 supported)

← line line number where exception occurred

Returns:

except_raise() cannot return anything

Todo

Improvements are possible and planned:

• it would be useful to show stack traces when an uncaught exception leads to
abortion of a program. The stack traces should include as much information
as possible, for example, names of caller functions, calling sites (file name,
function name and line number) and arguments.

Generated on Mon Jan 24 01:12:35 2011 for The Exception Handling Library by Doxygen

Index

except.c, 11
except_raise, 12

except.h, 13
EXCEPT_ENTERED, 17
EXCEPT_FINALIZED, 17
EXCEPT_HANDLED, 17
EXCEPT_RAISED, 17
EXCEPT_ELSE, 14
EXCEPT_END, 15
EXCEPT_EXCEPT, 15
EXCEPT_FINALLY, 15
except_raise, 17
EXCEPT_RETURN, 16
EXCEPT_TRY, 16

EXCEPT_ENTERED
except.h, 17

EXCEPT_FINALIZED
except.h, 17

EXCEPT_HANDLED
except.h, 17

EXCEPT_RAISED
except.h, 17

EXCEPT_ELSE
except.h, 14

EXCEPT_END
except.h, 15

EXCEPT_EXCEPT
except.h, 15

EXCEPT_FINALLY
except.h, 15

except_raise
except.c, 12
except.h, 17

EXCEPT_RETURN
except.h, 16

EXCEPT_TRY
except.h, 16

	C Basic Library: Exception Handling Library
	Introduction
	How to Use The Library
	Some Caveats
	Improvements

	Boilerplate Code
	Future Directions
	Stack Traces

	Contact Me
	Copyright

	Todo List
	File Index
	File List

	File Documentation
	except.c File Reference
	Detailed Description
	Function Documentation
	except_raise

	except.h File Reference
	Detailed Description
	Define Documentation
	EXCEPT_ELSE
	EXCEPT_END
	EXCEPT_EXCEPT
	EXCEPT_FINALLY
	EXCEPT_RETURN
	EXCEPT_TRY

	Enumeration Type Documentation
	"@0

	Function Documentation
	except_raise

