
The Text Library
0.2.1

Generated by Doxygen 1.5.8

Mon Jan 24 01:12:43 2011

Contents

1 C Basic Library: Text Library 1

1.1 Introduction . 1

1.2 How to Use The Library . 1

1.2.1 Some Caveats . 3

1.3 Boilerplate Code . 4

1.4 Future Directions . 4

1.4.1 Replacing Stack-based Storage Management 4

1.4.2 Minor Changes . 4

1.5 Contact Me . 5

1.6 Copyright . 5

2 Todo List 7

3 Data Structure Index 9

3.1 Data Structures . 9

4 File Index 11

4.1 File List . 11

5 Data Structure Documentation 13

5.1 text_t Struct Reference . 13

5.1.1 Detailed Description . 13

5.1.2 Field Documentation . 14

5.1.2.1 len . 14

5.1.2.2 str . 14

6 File Documentation 15

ii CONTENTS

6.1 text.c File Reference . 15

6.1.1 Detailed Description . 17

6.1.2 Define Documentation . 18

6.1.2.1 SWAP . 18

6.1.3 Function Documentation . 18

6.1.3.1 text_any . 18

6.1.3.2 text_box . 18

6.1.3.3 text_cat . 19

6.1.3.4 text_chr . 20

6.1.3.5 text_cmp . 20

6.1.3.6 text_dup . 21

6.1.3.7 text_find . 21

6.1.3.8 text_gen . 22

6.1.3.9 text_get . 22

6.1.3.10 text_many . 23

6.1.3.11 text_map . 23

6.1.3.12 text_match . 24

6.1.3.13 text_pos . 25

6.1.3.14 text_put . 25

6.1.3.15 text_rchr . 26

6.1.3.16 text_restore . 26

6.1.3.17 text_reverse . 27

6.1.3.18 text_rfind . 27

6.1.3.19 text_rmany . 28

6.1.3.20 text_rmatch . 29

6.1.3.21 text_rupto . 29

6.1.3.22 text_save . 30

6.1.3.23 text_sub . 31

6.1.3.24 text_upto . 31

6.2 text.h File Reference . 33

6.2.1 Detailed Description . 35

6.2.2 Define Documentation . 35

6.2.2.1 TEXT_ACCESS 35

6.2.3 Typedef Documentation . 36

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

CONTENTS iii

6.2.3.1 text_save_t . 36

6.2.4 Function Documentation . 36

6.2.4.1 text_any . 36

6.2.4.2 text_box . 37

6.2.4.3 text_cat . 37

6.2.4.4 text_chr . 38

6.2.4.5 text_cmp . 38

6.2.4.6 text_dup . 39

6.2.4.7 text_find . 39

6.2.4.8 text_get . 40

6.2.4.9 text_many . 40

6.2.4.10 text_map . 41

6.2.4.11 text_match . 42

6.2.4.12 text_pos . 43

6.2.4.13 text_put . 43

6.2.4.14 text_rchr . 44

6.2.4.15 text_restore . 44

6.2.4.16 text_reverse . 45

6.2.4.17 text_rfind . 45

6.2.4.18 text_rmany . 46

6.2.4.19 text_rmatch . 46

6.2.4.20 text_rupto . 47

6.2.4.21 text_save . 48

6.2.4.22 text_sub . 48

6.2.4.23 text_upto . 49

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

Chapter 1

C Basic Library: Text Library

Version:

0.2.1

Author:

Jun Woong (woong.jun at gmail.com)

Date:

last modified on 2011-01-24

1.1 Introduction

This document specifies the Text Library which belongs to the C Basic Library. The
basic structure is from David Hanson’s book, "C Interfaces and Implementations." I
modified the original implementation to add missing but useful functions, to make it
conform to the C standard and to enhance its readibility; for example a prefix is used
more strictly in order to avoid the user namespace pollution.

Since the book explains its design and implementation in a very comprehensive way,
not to mention the copyright issues, it is nothing but waste to repeat it here, so I finish
this document by giving introduction to the library; how to use the facilities is deeply
explained in files that define them.

The Text Library reserves identifiers starting with text_ and TEXT_, and imports the
Assertion Library (which requires the Exception Handling Library) and the Memory
Management Library.

1.2 How to Use The Library

The Text Library is intended to aid string manipulation in C. In C, even a simple form
of string handling like obtaining a sub-string requires lengthy code performing memory

2 C Basic Library: Text Library

allocation and deallocation. This is mainly because strings in C end with a null charac-
ter, which interferes the storage for a single string from being shared for representing
its sub-strings. The Text Library provides an alternative representation for strings, that
is composed of a sequence of characters (not necessarily terminated by a null) and its
length in byte. This representation helps many string operations to be efficient. In ad-
dition to it, the storage necessary for the strings is almost completely controled by the
library; every allocation done by the library is remembered internally, and a user has,
even if not complete, control over it.

For example, consider two typical cases to handle strings: obtaining a sub-string and
appending a string to another string.

char *t;
t = malloc(strlen(s+n) + 1);
if (!t)

...
strcpy(t, s+n);
...
free(t);

This code shows a typical way in C to get a sub-string from a string s and saves it
to t. Since the string length is often not predictable, it is essential for a product-level
program to dynamically allocate storage for the sub-string, and it is obliged not to
forget to release it. Using the Text Library, this construct changes to:

text_t ts, tt;
ts = text_put(s);
tt = text_sub(ts, m, 0);

where text_put() converts a C string s to a text_t string ts, and text_sub() gets a
sub-string from it. text_put() and text_sub() allocate any necessary storage and a user
does not have to take care of it.

char *s1, *s2, *t;
t = malloc(strlen(s1)+strlen(s2) + 1);
if (!t)

...
strcpy(t, s1);
strcat(t, s2);
...
free(t);

Similarly, this code appends a string s2 to another string s1, and saves the result to
t. Not to mention that the code repeats unnecessary scanning of strings, managing
storages allocated for strings is quite burdensome. Compare this code to a version
using the Text Library:

text_t ts1, ts2, tt;
ts1 = text_put(s1);
ts2 = text_put(s2);
tt = text_cat(ts1, ts2);

All things it has to do is to convert the C strings to their text_t string and to apply
the string concatenating operation to them.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

1.2 How to Use The Library 3

As you can see in the examples above, there is an extra expense to convert between C
strings and text_t strings, but the merit that text_t strings bring is quite significant
and that expense should not be that big if unnecessary conversions are eliminated by a
good program design.

In general, referring to a character in a string is achieved by calculating an index of the
character in the array for the string. In this library, a new and more convenient scheme
to refer to certain positions in a string is introduced; see text_pos() for details. Just to
mention one advantage the new scheme has, in order to refer to the end of a string, there
is no need to call a string-length function or to inspect the len member of a text_t
object; passing 0 to a position parameter of a library function is enough.

Managing the storage for text_t strings (called "the text space") is similar to record
the state of the text space and to restore it to one of its previous states. Whenever the
library allocates storage for a string, it acts as if it changes the state of the text space.
A user code records the state when it wants and can deallocate any storage allocated
after that record by restoring the text space to the remembered state; you might notice
that the text space behaves like a stack containing the allocated chunks. text_save() and
text_restore() explain more details.

1.2.1 Some Caveats

A null character that terminates a C string is not special in handling a text_t string.
This means that a text_t string can have embedded null characters in it and all func-
tions except for one converting to a C string treat a null indifferently from a normal
character. Note that a text_t string does not need to end with a null character.

On the contrary, nothing prevents a text_t string from ending with a null character;
to be precise, the string contains (rather than ends with) the null character as its part. It
is sometimes useful to have a text_t string contain a null character, especially when
converting it to a C string occurs very frequently; note that, however, placing a null
character in a text_t string prohibits other strings from sharing the storage with it,
which is to give up the major advantage the Text Library offers.

Functions in this library always generate a new string for the result. Comparing strcat()
to text_cat() shows what this means:

strcat(s1, s2);

Assuming that the area s1 points to is big enough to contain the result, strcat() modifies
the string s1 by appending s2 to it. An equivalent text_t version is as follows:

t = text_cat(s1, s2);

where t is the resulting string and, s1 and s2 are unchanged. This difference, even if
looks very small, often leads an unintended bug like writing this kind of code:

text_cat(s1, s2);

and expecting s1 to point to the resulting string. The same caution goes for text_dup()
and text_reverse(), too.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

4 C Basic Library: Text Library

1.3 Boilerplate Code

A typical use of the Text Library starts with recording the state of the text space for
managing storage:

text_save_t *chckpt;

chckpt = text_save();

Since the state of the text space is kept before any other Text Library functions are
invoked, restoring the state to what is kept in chckpt effectively releases all storages
the Text Library allocates. If you don’t mind the memory leakage problem, you may
ignore about saving and restoring the text space state.

Then, the program can generate a text_t string from a C string (text_box(), text_-
put() and text_gen()), convert a text_string back to a C string (text_get()), apply
various string operations (text_sub(), text_cat(), text_dup() and text_reverse()) includ-
ing mapping a string to another string (text_map()), compare two strings (text_cmp()),
locate a character in a string (text_chr(), text_rchr(), text_upto(), text_rupto(), text_-
any(), text_many() and text_rmany()), and locate a string in another string (text_find(),
text_rfind(), text_match() and text_rmatch()). To aid an access to the internal of strings,
text_pos() and TEXT_ACCESS() are provided.

Finishing jobs using text_t strings, the following code that corresponds to the above
call to text_save() restores the state of the text space:

text_restore(&chckpt);

As explained in text_save(), there is no requirement that text_save() and its correspond-
ing text_restore() be called only once; see text_save() and text_restore() for details.

1.4 Future Directions

1.4.1 Replacing Stack-based Storage Management

The stack-like storage management by text_save() and text_restore() needs to be re-
placed so that other libraries are free to use the Text Library. With the current approach,
invoking a clean-up function of a library that calls text_restore() for the library’s texts
can also destroy the storage for the program’s texts. Since this effectively discourages
libraries not to use the Text Library, it would be better to hire a lifetime-based approach
like that used in the Arena Library.

1.4.2 Minor Changes

If the stack-like strategy for managing the storage is not replaced as described above,
detecting some erroneous sequences of text_save() and text_restore() would be useful.
For more information, see the example given in text_save().

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

1.5 Contact Me 5

1.5 Contact Me

Visit http://project.woong.org to get the lastest version of this library. Only
a small portion of my homepage (http://www.woong.org) is maintained in En-
glish, thus one who is not good at Korean would have difficulty when navigating most
of other pages served in Korean. If you think the information you are looking for is on
pages written in Korean you cannot read, do not hesitate to send me an email asking
for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and then I will reply as soon as possible.

1.6 Copyright

I do not wholly hold the copyright of this library; it is mostly held by David Hanson as
stated in his book, "C: Interfaces and Implementations:"

Copyright (c) 1994,1995,1996,1997 by David R. Hanson.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

For the parts I added or modified, the following applies:

Copyright (C) 2009-2011 by Jun Woong.

This package is a string manipulation implementation by Jun Woong. The implemen-
tation was written so as to conform with the Standard C published by ISO 9899:1990
and ISO 9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

http://project.woong.org
http://www.woong.org

6 C Basic Library: Text Library

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

Chapter 2

Todo List

8 Todo List

Global text_save Some improvements are possible and planned:

• text_save() and text_restore() can be improved to detect an erroneous call
shown in the above example;

• the stack-like storage management by text_save() and text_restore() un-
necessarily keeps the Text Library from being used in ohter libraries. For
example, text_restore() invoked by a clean-up function of a library can de-
stroy the storage for texts that are still in use by a program. The approach
used by the Arena Library would be more appropriate.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

text_t (Implements a text) . 13

10 Data Structure Index

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

text.c (Source for Text Library (CBL)) . 15
text.h (Documentation for Text Library (CBL)) 33

12 File Index

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

Chapter 5

Data Structure Documentation

5.1 text_t Struct Reference

implements a text.

#include <text.h>

Data Fields

• int len
• const char ∗ str

5.1.1 Detailed Description

implements a text.

struct text_t implements a text that is alternative representation of character strings.
The C representation of strings using the terminating null character has some draw-
backs:

• it has to scan all characters in a string to determine its length, and

• it too often has to copy a string even when not necessary. For example, suppose
concatenating a string to another string and those strings are not immutable. To
determine the byte into which the former string is to be put, one has to compute
the length of the later string, which requires to scan all characters in it. Besides,
one has to somehow allocate storage to contain the result because there is no
way for two different strings to share the same sequence of characters in the
storage. Jobs like scanning a string and allocation of new storage can be avoided
by getting rid of the terminating null character and keeping the length of a string
in a separate place.

Because the null character does not play a role of terminating a string anymore, there
is no need to treat it specially. Therefore, a text represented by text_t is allowed to

14 Data Structure Documentation

contain the null character anywhere in it, and other text_t functions never treat it
in a special way. Nevertheless, be warned that, if a text which has the null character
embedded in it is converted to a C string, the resulting string might not work as expected
because of the embedded null character.

The Text Library is not intended to completely replace the C representation of strings.
To perform string operations other than those provided by the Text Library, a user has
to convert a text back to a C string and then apply ordinary string functions to the result.
Such a conversion between those two representations is the cost for the benefit the Text
Library confers. To minimize the cost, some basic text operations like comparison and
mapping are also supported.

text_t intentionally reveals its interals, so that a user can readily get the length of
a text and can access to the text as necessary. Modifying a text, however, makes a
program behave in an unpredictable way, which is the reason the strmember is const-
qualified.

Most functions in this library take and return a text_t value, not a pointer to it.
This design approach simplifies an implementation since they never need to allocate a
descriptor for a text. The size of text_t being not so big, passing its value would
cause no big penalty on performance.

5.1.2 Field Documentation

5.1.2.1 int text_t::len

length of string

5.1.2.2 const char∗ text_t::str

string (possibly not having null character

The documentation for this struct was generated from the following file:

• text.h

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

Chapter 6

File Documentation

6.1 text.c File Reference

Source for Text Library (CBL).

#include <stddef.h>

#include <string.h>

#include <limits.h>

#include "cbl/assert.h"

#include "cbl/memory.h"

#include "text.h"

Include dependency graph for text.c:

Data Structures

• struct text_save_t
• struct chunk

Defines

• #define IDX(i, len) (((i) <= 0)? (i) + (len): (i) - 1)
• #define ISATEND(s, n) ((s).str+(s).len == current → avail && (n) <= current
→ limit-current→ avail)

• #define EQUAL(s, i, t) (memcmp(&(s).str[i], (t).str, (t).len) == 0)

16 File Documentation

• #define SWAP(i, j)

Functions

• int() text_pos (text_t s, int i)
normalizes a text position.

• text_t() text_box (const char ∗str, int len)
boxes a null-terminated string to construct a text.

• text_t() text_sub (text_t s, int i, int j)
constructs a sub-text of a text.

• text_t() text_put (const char ∗str)
constructs a text from a null-terminated string.

• text_t() text_gen (const char str[], int size)
constructs a text from an array of characters.

• char ∗() text_get (char ∗str, int size, text_t s)
converts a text to a C string.

• text_t() text_dup (text_t s, int n)
constructs a text by duplicating another text.

• text_t() text_cat (text_t s1, text_t s2)
constructs a text by concatenating two texts.

• text_t() text_reverse (text_t s)
constructs a text by reversing a text.

• text_t() text_map (text_t s, const text_t ∗from, const text_t ∗to)
constructs a text by converting a text based on a specified mapping.

• int() text_cmp (text_t s1, text_t s2)
compares two texts.

• text_save_t ∗() text_save (void)
saves the current top of the text space.

• void() text_restore (text_save_t ∗∗save)
restores a saved state of the text space.

• int() text_chr (text_t s, int i, int j, int c)
finds the first occurrence of a character in a text.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.1 text.c File Reference 17

• int() text_rchr (text_t s, int i, int j, int c)

finds the last occurrence of a character in a text.

• int() text_upto (text_t s, int i, int j, text_t set)

finds the first occurrence of any character from a set in a text.

• int() text_rupto (text_t s, int i, int j, text_t set)

finds the last occurrence of any character from a set in a text.

• int() text_find (text_t s, int i, int j, text_t str)

finds the first occurrence of a text in a text.

• int() text_rfind (text_t s, int i, int j, text_t str)

finds the last occurrence of a text in a text.

• int() text_any (text_t s, int i, text_t set)

checks if a character of a specified position matches any character from a set.

• int() text_many (text_t s, int i, int j, text_t set)

finds the end of a span consisted of characters from a set.

• int() text_rmany (text_t s, int i, int j, text_t set)

finds the start of a span consisted of characters from a set.

• int() text_match (text_t s, int i, int j, text_t str)

checks if a text starts with another text.

• int() text_rmatch (text_t s, int i, int j, text_t str)

checks if a text ends with another text.

Variables

• const text_t text_ucase = { 26, "ABCDEFGHIJKLMNOPQRSTUVWXYZ" }
• const text_t text_lcase = { 26, "abcdefghijklmnopqrstuvwxyz" }
• const text_t text_digits = { 10, "0123456789" }
• const text_t text_null = { 0, "" }

6.1.1 Detailed Description

Source for Text Library (CBL).

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

18 File Documentation

6.1.2 Define Documentation

6.1.2.1 #define SWAP(i, j)

Value:

do { \
int t = i; \
i = j; \
j = t; \

} while(0)

6.1.3 Function Documentation

6.1.3.1 int() text_any (text_t s, int i, text_t set)

checks if a character of a specified position matches any character from a set.

text_any() checks if a character of a specified position by i in a text s matches any
character from a set set. i specifies the left position of a character. If it matches, text_-
any() returns the right positive position of the character or 0 otherwise. For example,
given the following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_any(t, 2, text_box("ca", 2)) gives 3 because a matches. If the set containing char-
acters to find is empty, text_any() always fails and returns 0.

Note that giving to i the last position (7 or 0 in the example text) makes text_any() fail
and return 0; that does not cause the assertion to fail since it is a valid position.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or set

Parameters:

← s text in which character is to be found

← i left position of character to match

← set set text containing characters to find

Returns:

right positive position of matched character or 0

6.1.3.2 text_t() text_box (const char ∗ str, int len)

boxes a null-terminated string to construct a text.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.1 text.c File Reference 19

text_box() "boxes" a constant string or a string whose storage is already allocated prop-
erly by a user. Unlike text_put(), text_box() does not copy a given string and the length
of a text is granted by a user. text_box() is useful especially when constructing a text
representation for a string literal:

text_t t = text_box("sample", 6);

Note, in the above example, that the terminating null character is excluded by the length
given to text_box(). If a user gives 7 for the length, the resulting text includes a null
character, which constructs a different text from what the above call makes.

An empty text whose length is 0 is allowed. It can be constructed simply as in the
following example:

text_t empty = text_box("", 0);

and a predefined empty text, text_null is also provided for convenience.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid string or length given for str or len

Parameters:

← str string to box for text representation
← len length of string to box

Returns:

text containing given string

6.1.3.3 text_t() text_cat (text_t s1, text_t s2)

constructs a text by concatenating two texts.

text_cat() constructs a new text by concatenating s2 to s1.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid text given for s1 or s2

Warning:

Unlike strcat() in the standard library, text_cat() does not change a given text by
concatenation, but creates a new text by concatenating s2 to s1, which means
only the returned text has the concatenated result.

Parameters:

← s1 text to which another text is to be concatenated
← s2 text to concatenate

Returns:

concatenated text

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

20 File Documentation

6.1.3.4 int() text_chr (text_t s, int i, int j, int c)

finds the first occurrence of a character in a text.

text_chr() finds the first occurrence of a character c in the specified range of a text s.
The range is specified by i and j. If found, text_chr() returns the left position of the
found character. It returns 0 otherwise. For example, given the following text:

1 2 3 4 5 6 7 (positive positions)
e v e n t s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_chr(t, -6, 5, ’e’) gives 1 while text_chr(t, -6, 5, ’s’) does 0.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s

Parameters:

← s text in which character is to be found
← i range specified
← j range specified
← c character to find

Returns:

left positive position of found character or 0

6.1.3.5 int() text_cmp (text_t s1, text_t s2)

compares two texts.

text_cmp() compares two texts as strcmp() does strings except that a null character is
not treated specially by the former.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s1 or s2

Parameters:

← s1 text to compare
← s2 text to compare

Returns:

comparison result

Return values:

negative s1 compares less than s2
0 s1 compares equal to s2
positive s1 compares larger than s2

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.1 text.c File Reference 21

6.1.3.6 text_t() text_dup (text_t s, int n)

constructs a text by duplicating another text.

text_dup() takes a text and constructs a text that duplicates the original text n times.
For example, the following call

text_dup(text_box("sample", 6), 3);

constructs as the result a text: samplesamplesample

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid text given for s

Warning:

Note that text_dup() does not change a given text, but creates a new text that du-
plicates a given text. Do not forget, in this library, a text is immutable.

Parameters:

← s text to duplicate

← n number of duplication

Returns:

text duplicated

6.1.3.7 int() text_find (text_t s, int i, int j, text_t str)

finds the first occurrence of a text in a text.

text_find() finds the first occurrence of a text str in the specified range of a text s.
The range is specified by i and j. If found, text_find() returns the left position of
the character starting the found text. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_find(t, 6, -6, text_box("ca", 2)) gives 1. If str is empty, text_find() always suc-
ceeds and returns the left positive position of the specified range.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or str

Parameters:

← s text in which another text is to be found

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

22 File Documentation

← i range specified

← j range specified

← str text to find

Returns:

left positive position of found text or 0

6.1.3.8 text_t() text_gen (const char str[], int size)

constructs a text from an array of characters.

text_gen() copies size characters from str to the text space and returns a text repre-
senting the copied characters. The terminating null character is considered an ordinary
character if any. Because it always copies given characters, the storage for the original
array can be safely released after a text for it has been generated.

text_gen() is useful when a caller wants to construct a text that embodies the terminat-
ing null character with allocating storage for it. text_put() allocates storage but always
precludes the null character, and text_box() can make the resulting text embody the
null character but allocates no storage. text_gen() is added to fill the gap.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid string given for str, invalid size given for size

Parameters:

← str null terminated string to copy for text representation

← size length of string

Returns:

text containing given string

6.1.3.9 char∗() text_get (char ∗ str, int size, text_t s)

converts a text to a C string.

text_get() is used when converting a text to a C string that is null-terminated. There are
two ways to provide a buffer into which the resulting C string is to be written. If str
is not a null pointer, text_get() assumes that a user provides the buffer whose size is
size, and tries to write the conversion result to it. If its specified size is not enough to
contain the result, it raises an exception due to assertion failure. If str is a null pointer,
size is ignored and text_get() allocates a proper buffer to contain the reulsting string.
The Text Library never deallocates the buffer allocated by text_ger(), thus a user has to
set it free when it is no longer necessary.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid text given for s, invalid buffer or size given for str or size

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.1 text.c File Reference 23

Parameters:

→ str buffer into which converted string to be written

← size size of given buffer

← s text to convert to C string

Returns:

pointer to buffer containing C string

6.1.3.10 int() text_many (text_t s, int i, int j, text_t set)

finds the end of a span consisted of characters from a set.

If the specified range of a text s starts with a character from a set set, text_many()
returns the right positive position ending a span consisted of characters from the set.
The range is specified by i and j. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_many(t, 2, 6, text_box("ca", 2)) gives 5. If the set containing characters to find is
empty, text_many() always fails and returns 0.

Since text_many() checks the range starts with a character from a given set, text_-
many() is often called after text_upto().

The original code in the book is modified to form a more compact form.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or set

Parameters:

← s text in which character to be found

← i range specified

← j range specified

← set set text containing characters to find

Returns:

right positive position of span or 0

6.1.3.11 text_t() text_map (text_t s, const text_t ∗ from, const text_t ∗ to)

constructs a text by converting a text based on a specified mapping.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

24 File Documentation

text_map() converts a text based on a mapping that is described by two pointers to texts.
Both pointers to describe a mapping should be a null pointers or non-null pointers; it is
not allowed for only one of them to be a null pointer.

When they are non-null, they should point to texts whose lengths equal. text_map()
takes a text and copies it converting any occurrence of characters in a text pointed by
from to corresponding characters in a text pointed by to, where the corresponding
characters are determined by their positions in a text. Ohter characters are copied
unchagned.

Once a mapping is set by calling text_map() with non-null text pointers, text_map()
can be called with a null pointers for from and to, in which case the latest mapping
is used for conversion. Calling with a null pointers is highly recommended whenever
possible, since constructing a mapping table from two texts costs time.

For example, after the following call:

result = text_map(t, &text_upper, &text_lower);

result is a text copied from t converting any uppercase letters in it to corresponding
lowercase letters.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid text given for s, from or to

Parameters:

← s text to convert
← from pointer to text describing mapping
← to pointer to text describing mapping

Returns:

converted text

6.1.3.12 int() text_match (text_t s, int i, int j, text_t str)

checks if a text starts with another text.

If the specified range of a text s starts with a text str, text_match() returns the right
positive position ending the matched text. The range is specified by i and j. It returns
0 otherwise. For example, given the following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_match(t, 3, 7, text_box("ca", 2)) gives 5. If str is empty, text_match() always
succeeds and returns the left positive position of the specified range.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or str

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.1 text.c File Reference 25

Parameters:

← s text in which another text to be found

← i range specified

← j range specified

← str text to find

Returns:

right positive position ending matched text or 0

6.1.3.13 int() text_pos (text_t s, int i)

normalizes a text position.

A text position may be negative and it is often necessary to normalize it into the positive
range. text_pos() takes a text position and adjusts it to the positive range. For example,
given a text:

1 2 3 4 5 (positive positions)
t e s t

-4 -3 -2 -1 0 (non-positive positions)
0 1 2 3 (array indices)

both text_pos(t, 2) and text_pos(t, -3) give 2.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s

Parameters:

← s string for which position is to be normalized

← i position to normalize

Returns:

nomalized positive position

6.1.3.14 text_t() text_put (const char ∗ str)

constructs a text from a null-terminated string.

text_put() copies a null-terminated string to the text space and returns a text represent-
ing the copied string. The resulting text does not contain the terminating null character.
Because it always copies a given string, the storage for the original string can be safely
released after a text for it has been generated.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid string given for str

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

26 File Documentation

Parameters:

← str null terminated string to copy for text representation

Returns:

text containing given string

6.1.3.15 int() text_rchr (text_t s, int i, int j, int c)

finds the last occurrence of a character in a text.

text_rchr() finds the last occurrence of a character c in the specified range of a text s.
The range is specified by i and j. If found, text_rchr() returns the left position of the
found character. It returns 0 otherwise. For example, given the following text:

1 2 3 4 5 6 7 (positive positions)
e v e n t s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_rchr(t, -6, 5, ’e’) gives 3 while text_rchr(t, -6, 5, ’s’) does 0. The "r" in its name
stands for "right" since what it does can be seen as scanning a given text from the right
end.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s

Parameters:

← s text in which character is to be found

← i range specified

← j range specified

← c character to find

Returns:

left positive position of found character or 0

6.1.3.16 void() text_restore (text_save_t ∗∗ save)

restores a saved state of the text space.

text_restore() gets the text space to a state returned by text_save(). As explained in
text_save(), any text and state generated after saving the state to be reverted are invali-
dated, thus they should not be used. See text_save() for more details.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid saved state given for save

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.1 text.c File Reference 27

Parameters:

← save pointer to saved state of text space

Returns:

nothing

6.1.3.17 text_t() text_reverse (text_t s)

constructs a text by reversing a text.

text_reverse() constructs a text by reversing a given text.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid text given for s

Warning:

text_reverse() does not change a given text, but creates a new text by reversing a
given text.

Parameters:

← s text to reverse

Returns:

reversed text

6.1.3.18 int() text_rfind (text_t s, int i, int j, text_t str)

finds the last occurrence of a text in a text.

text_rfind() finds the last occurrence of a text str in the specified range of a text s.
The range is specified by i and j. If found, text_rfind() returns the left position of
the character starting the found text. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_rfind(t, -6, 6, text_box("ca", 2)) gives 3. If str is empty, text_rfind() always
succeeds and returns the right positive position of the specified range.

The "r" in its name stands for "right" since what it does can be seen as scanning a given
text from the right end.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or str

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

28 File Documentation

Parameters:

← s text in which another text is to be found

← i range specified

← j range specified

← str text to find

Returns:

left positive position of found text or 0

6.1.3.19 int() text_rmany (text_t s, int i, int j, text_t set)

finds the start of a span consisted of characters from a set.

If the specified range of a text s ends with a character from a set set, text_rmany()
returns the left positive position starting a span consisted of characters from the set.
The range is specified by i and j. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_rmany(t, 3, 7, text_box("aos", 3)) gives 4. The "r" in its name stands for "right"
since what it does can be seen as scanning a given text from the right end. If the set
containing characters to find is empty, text_rmany() always fails and returns 0.

Since text_rmany() checks the range ends with a character from a given set, text_-
rmany() is often called after text_rupto().

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or set

Parameters:

← s text in which character to be found

← i range specified

← j range specified

← set set text containing characters to find

Returns:

right positive position of span or 0

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.1 text.c File Reference 29

6.1.3.20 int() text_rmatch (text_t s, int i, int j, text_t str)

checks if a text ends with another text.

If the specified range of a text s ends with a text str, text_rmatch() returns the left
positive position starting the matched text. The range is specified by i and j. It returns
0 otherwise. For example, given the following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_rmatch(t, 3, 7, text_box("os", 2)) gives 5. If str is empty, text_rmatch() always
succeeds and returns the right positive position of the specified range.

The "r" in its name stands for "right" since what it does can be seen as scanning a given
text from the right end.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or str

Parameters:

← s text in which another text to be found
← i range specified
← j range specified
← str text to find

Returns:

left positive position starting matched text or 0

6.1.3.21 int() text_rupto (text_t s, int i, int j, text_t set)

finds the last occurrence of any character from a set in a text.

text_rupto() finds the last occurrence of any character from a set set in the specified
range of a text s. The range is specified by i and j. If found, text_rupto() returns
the left position of the found character. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
e v e n t s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_rupto(t, -6, 5, text_box("escape", 6)) gives 3. If the set containing characters to
find is empty, text_rupto() always fails and returns 0.

The "r" in its name stands for "right" since what it does can be seen as scanning a given
text from the right end.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or set

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

30 File Documentation

Parameters:

← s text in which character is to be found

← i range specified

← j range specified

← set set text containing characters to find

Returns:

left positive position of found character or 0

6.1.3.22 text_save_t∗() text_save (void)

saves the current top of the text space.

text_save() saves the current state of the text space and returns it. The text space to
provide storages for texts can be seen as a stack and storages allocated by text_∗()
(except that allocated by text_get()) can be seen as piled up in the stack, thus any
storage being used by the Text Library after a call to text_save() can be set free by
calling text_restore() with the saved state. After text_restore(), any text constructed
after the text_save() call is invalidated and should not be used. In addition, other saved
states, if any, get also invalidated if the text space gets back to a previous state by a
state saved before they are generated. For example, after the following code:

h = text_save();
...
g = text_save();
...
text_restore(h);

calling text_restore() with g makes the program behave in an unpredicatble way since
the last call to text_restore() with h invalidates g.

Possible exceptions: memory_exceptfail

Unchecked errors: none

Returns:

saved state of text space

Todo

Some improvements are possible and planned:

• text_save() and text_restore() can be improved to detect an erroneous call
shown in the above example;

• the stack-like storage management by text_save() and text_restore() unnec-
essarily keeps the Text Library from being used in ohter libraries. For exam-
ple, text_restore() invoked by a clean-up function of a library can destroy the
storage for texts that are still in use by a program. The approach used by the
Arena Library would be more appropriate.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.1 text.c File Reference 31

6.1.3.23 text_t() text_sub (text_t s, int i, int j)

constructs a sub-text of a text.

text_sub() constructs a sub-text from characters between two specified positions in a
text. Positions in a text are specified as in the Doubly-Linked List Library:

1 2 3 4 5 6 7 (positive positions)
s a m p l e

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

Given the above text, a sub-string amp can be specified as [2:5], [2:-2], [-5:5] or [-5:-2].
Furthermore, the order in which the positions are given does not matter, which means
[5:2] indicates the same sequence of characters as [2:5]. In conclusion, the following
calls to text_sub() gives the same sub-text.

text_sub(t, 2, 5);
text_sub(t, -5: 5);
text_sub(t, -2: -5);
text_sub(t, 2: -2);

Since a user is not allowed to modify the resulting text and it need not end with a null
character, text_sub() does not have to allocate storage for the result.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s

Warning:

Do not assume that the resulting text always share the same storage as the original
text. An implementation might change not to guarantee it, and there is already an
exception to that assumption - when text_sub() returns an empty text.

Parameters:

← s text from which sub-text to be constructed

← i position for sub-text

← j position for sub-text

Returns:

sub-text constructed

6.1.3.24 int() text_upto (text_t s, int i, int j, text_t set)

finds the first occurrence of any character from a set in a text.

text_upto() finds the first occurrence of any character from a set set in the specified
range of a text s. The range is specified by i and j. If found, text_upto() returns
the left position of the found character. It returns 0 otherwise. For example, given the
following text:

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

32 File Documentation

1 2 3 4 5 6 7 (positive positions)
e v e n t s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_upto(t, -6, 5, text_box("vwxyz", 5)) gives 2. If the set containing characters to find
is empty, text_upto() always fails and returns 0.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or set

Parameters:

← s text in which character is to be found

← i range specified

← j range specified

← set set text containing characters to find

Returns:

left positive position of found character or 0

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.2 text.h File Reference 33

6.2 text.h File Reference

Documentation for Text Library (CBL).

This graph shows which files directly or indirectly include this file:

Data Structures

• struct text_t

implements a text.

Defines

• #define TEXT_ACCESS(t, i) ((t).str[((i) <= 0)? (i)+(t).len: (i)-1])

accesses with a position a character in a text.

Typedefs

• typedef struct text_save_t text_save_t

represents information on the top of the stack-like text space.

Functions

text creating functions:

• text_t text_put (const char ∗)
constructs a text from a null-terminated string.

• text_t text_gen (const char ∗, int)
• text_t text_box (const char ∗, int)

boxes a null-terminated string to construct a text.

• char ∗ text_get (char ∗, int, text_t)
converts a text to a C string.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

34 File Documentation

text positioning functions:

• int text_pos (text_t, int)
normalizes a text position.

text handling functions:

• text_t text_sub (text_t, int, int)
constructs a sub-text of a text.

• text_t text_cat (text_t, text_t)
constructs a text by concatenating two texts.

• text_t text_dup (text_t, int)
constructs a text by duplicating another text.

• text_t text_reverse (text_t)
constructs a text by reversing a text.

• text_t text_map (text_t, const text_t ∗, const text_t ∗)
constructs a text by converting a text based on a specified mapping.

text comparing functions:

• int text_cmp (text_t, text_t)
compares two texts.

text analyzing functions (character):

• int text_chr (text_t, int, int, int)
finds the first occurrence of a character in a text.

• int text_rchr (text_t, int, int, int)
finds the last occurrence of a character in a text.

• int text_upto (text_t, int, int, text_t)
finds the first occurrence of any character from a set in a text.

• int text_rupto (text_t, int, int, text_t)
finds the last occurrence of any character from a set in a text.

• int text_any (text_t, int, text_t)
checks if a character of a specified position matches any character from a set.

• int text_many (text_t, int, int, text_t)
finds the end of a span consisted of characters from a set.

• int text_rmany (text_t, int, int, text_t)

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.2 text.h File Reference 35

finds the start of a span consisted of characters from a set.

text analyzing functions (string):

• int text_find (text_t, int, int, text_t)
finds the first occurrence of a text in a text.

• int text_rfind (text_t, int, int, text_t)
finds the last occurrence of a text in a text.

• int text_match (text_t, int, int, text_t)
checks if a text starts with another text.

• int text_rmatch (text_t, int, int, text_t)
checks if a text ends with another text.

text space managing functions:

• text_save_t ∗ text_save (void)
saves the current top of the text space.

• void text_restore (text_save_t ∗∗save)
restores a saved state of the text space.

Variables

• const text_t text_ucase
• const text_t text_lcase
• const text_t text_digits
• const text_t text_null

6.2.1 Detailed Description

Documentation for Text Library (CBL).

Header for Text Library (CBL).

6.2.2 Define Documentation

6.2.2.1 #define TEXT_ACCESS(t, i) ((t).str[((i) <= 0)? (i)+(t).len: (i)-1])

accesses with a position a character in a text.

TEXT_ACCESS() is useful when accessing a character in a text when a position num-
ber is known. The position can be negative, but has to be within a valid range. For

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

36 File Documentation

example, given a text of 4 characters, a valid positive range for the position is from 1
to 4 and a valid negative range from -4 to -1; 0 is never allowed. No validity check for
the range is performed.

Possible exceptions: none

Unchecked errors: invalid position given for i

6.2.3 Typedef Documentation

6.2.3.1 typedef struct text_save_t text_save_t

represents information on the top of the stack-like text space.

An object of the type text_save_t is used when remembering the current top of
the stack-like text space and restoring the space to make it have as the current the
top remembered in the text_save_t object. For more details, see struct text_-
save_t, struct chunk, text_save() and text_restore().

6.2.4 Function Documentation

6.2.4.1 int text_any (text_t s, int i, text_t set)

checks if a character of a specified position matches any character from a set.

text_any() checks if a character of a specified position by i in a text s matches any
character from a set set. i specifies the left position of a character. If it matches, text_-
any() returns the right positive position of the character or 0 otherwise. For example,
given the following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_any(t, 2, text_box("ca", 2)) gives 3 because a matches. If the set containing char-
acters to find is empty, text_any() always fails and returns 0.

Note that giving to i the last position (7 or 0 in the example text) makes text_any() fail
and return 0; that does not cause the assertion to fail since it is a valid position.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or set

Parameters:

← s text in which character is to be found
← i left position of character to match
← set set text containing characters to find

Returns:

right positive position of matched character or 0

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.2 text.h File Reference 37

6.2.4.2 text_t text_box (const char ∗ str, int len)

boxes a null-terminated string to construct a text.

text_box() "boxes" a constant string or a string whose storage is already allocated prop-
erly by a user. Unlike text_put(), text_box() does not copy a given string and the length
of a text is granted by a user. text_box() is useful especially when constructing a text
representation for a string literal:

text_t t = text_box("sample", 6);

Note, in the above example, that the terminating null character is excluded by the length
given to text_box(). If a user gives 7 for the length, the resulting text includes a null
character, which constructs a different text from what the above call makes.

An empty text whose length is 0 is allowed. It can be constructed simply as in the
following example:

text_t empty = text_box("", 0);

and a predefined empty text, text_null is also provided for convenience.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid string or length given for str or len

Parameters:

← str string to box for text representation

← len length of string to box

Returns:

text containing given string

6.2.4.3 text_t text_cat (text_t s1, text_t s2)

constructs a text by concatenating two texts.

text_cat() constructs a new text by concatenating s2 to s1.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid text given for s1 or s2

Warning:

Unlike strcat() in the standard library, text_cat() does not change a given text by
concatenation, but creates a new text by concatenating s2 to s1, which means
only the returned text has the concatenated result.

Parameters:

← s1 text to which another text is to be concatenated

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

38 File Documentation

← s2 text to concatenate

Returns:

concatenated text

6.2.4.4 int text_chr (text_t s, int i, int j, int c)

finds the first occurrence of a character in a text.

text_chr() finds the first occurrence of a character c in the specified range of a text s.
The range is specified by i and j. If found, text_chr() returns the left position of the
found character. It returns 0 otherwise. For example, given the following text:

1 2 3 4 5 6 7 (positive positions)
e v e n t s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_chr(t, -6, 5, ’e’) gives 1 while text_chr(t, -6, 5, ’s’) does 0.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s

Parameters:

← s text in which character is to be found

← i range specified

← j range specified

← c character to find

Returns:

left positive position of found character or 0

6.2.4.5 int text_cmp (text_t s1, text_t s2)

compares two texts.

text_cmp() compares two texts as strcmp() does strings except that a null character is
not treated specially by the former.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s1 or s2

Parameters:

← s1 text to compare

← s2 text to compare

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.2 text.h File Reference 39

Returns:

comparison result

Return values:

negative s1 compares less than s2

0 s1 compares equal to s2

positive s1 compares larger than s2

6.2.4.6 text_t text_dup (text_t s, int n)

constructs a text by duplicating another text.

text_dup() takes a text and constructs a text that duplicates the original text n times.
For example, the following call

text_dup(text_box("sample", 6), 3);

constructs as the result a text: samplesamplesample

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid text given for s

Warning:

Note that text_dup() does not change a given text, but creates a new text that du-
plicates a given text. Do not forget, in this library, a text is immutable.

Parameters:

← s text to duplicate

← n number of duplication

Returns:

text duplicated

6.2.4.7 int text_find (text_t s, int i, int j, text_t str)

finds the first occurrence of a text in a text.

text_find() finds the first occurrence of a text str in the specified range of a text s.
The range is specified by i and j. If found, text_find() returns the left position of
the character starting the found text. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

40 File Documentation

text_find(t, 6, -6, text_box("ca", 2)) gives 1. If str is empty, text_find() always suc-
ceeds and returns the left positive position of the specified range.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or str

Parameters:

← s text in which another text is to be found

← i range specified

← j range specified

← str text to find

Returns:

left positive position of found text or 0

6.2.4.8 char∗ text_get (char ∗ str, int size, text_t s)

converts a text to a C string.

text_get() is used when converting a text to a C string that is null-terminated. There are
two ways to provide a buffer into which the resulting C string is to be written. If str
is not a null pointer, text_get() assumes that a user provides the buffer whose size is
size, and tries to write the conversion result to it. If its specified size is not enough to
contain the result, it raises an exception due to assertion failure. If str is a null pointer,
size is ignored and text_get() allocates a proper buffer to contain the reulsting string.
The Text Library never deallocates the buffer allocated by text_ger(), thus a user has to
set it free when it is no longer necessary.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid text given for s, invalid buffer or size given for str or size

Parameters:

→ str buffer into which converted string to be written

← size size of given buffer

← s text to convert to C string

Returns:

pointer to buffer containing C string

6.2.4.9 int text_many (text_t s, int i, int j, text_t set)

finds the end of a span consisted of characters from a set.

If the specified range of a text s starts with a character from a set set, text_many()
returns the right positive position ending a span consisted of characters from the set.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.2 text.h File Reference 41

The range is specified by i and j. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_many(t, 2, 6, text_box("ca", 2)) gives 5. If the set containing characters to find is
empty, text_many() always fails and returns 0.

Since text_many() checks the range starts with a character from a given set, text_-
many() is often called after text_upto().

The original code in the book is modified to form a more compact form.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or set

Parameters:

← s text in which character to be found

← i range specified

← j range specified

← set set text containing characters to find

Returns:

right positive position of span or 0

6.2.4.10 text_t text_map (text_t s, const text_t ∗ from, const text_t ∗ to)

constructs a text by converting a text based on a specified mapping.

text_map() converts a text based on a mapping that is described by two pointers to texts.
Both pointers to describe a mapping should be a null pointers or non-null pointers; it is
not allowed for only one of them to be a null pointer.

When they are non-null, they should point to texts whose lengths equal. text_map()
takes a text and copies it converting any occurrence of characters in a text pointed by
from to corresponding characters in a text pointed by to, where the corresponding
characters are determined by their positions in a text. Ohter characters are copied
unchagned.

Once a mapping is set by calling text_map() with non-null text pointers, text_map()
can be called with a null pointers for from and to, in which case the latest mapping
is used for conversion. Calling with a null pointers is highly recommended whenever
possible, since constructing a mapping table from two texts costs time.

For example, after the following call:

result = text_map(t, &text_upper, &text_lower);

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

42 File Documentation

result is a text copied from t converting any uppercase letters in it to corresponding
lowercase letters.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid text given for s, from or to

Parameters:

← s text to convert

← from pointer to text describing mapping

← to pointer to text describing mapping

Returns:

converted text

6.2.4.11 int text_match (text_t s, int i, int j, text_t str)

checks if a text starts with another text.

If the specified range of a text s starts with a text str, text_match() returns the right
positive position ending the matched text. The range is specified by i and j. It returns
0 otherwise. For example, given the following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_match(t, 3, 7, text_box("ca", 2)) gives 5. If str is empty, text_match() always
succeeds and returns the left positive position of the specified range.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or str

Parameters:

← s text in which another text to be found

← i range specified

← j range specified

← str text to find

Returns:

right positive position ending matched text or 0

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.2 text.h File Reference 43

6.2.4.12 int text_pos (text_t s, int i)

normalizes a text position.

A text position may be negative and it is often necessary to normalize it into the positive
range. text_pos() takes a text position and adjusts it to the positive range. For example,
given a text:

1 2 3 4 5 (positive positions)
t e s t

-4 -3 -2 -1 0 (non-positive positions)
0 1 2 3 (array indices)

both text_pos(t, 2) and text_pos(t, -3) give 2.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s

Parameters:

← s string for which position is to be normalized

← i position to normalize

Returns:

nomalized positive position

6.2.4.13 text_t text_put (const char ∗ str)

constructs a text from a null-terminated string.

text_put() copies a null-terminated string to the text space and returns a text represent-
ing the copied string. The resulting text does not contain the terminating null character.
Because it always copies a given string, the storage for the original string can be safely
released after a text for it has been generated.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid string given for str

Parameters:

← str null terminated string to copy for text representation

Returns:

text containing given string

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

44 File Documentation

6.2.4.14 int text_rchr (text_t s, int i, int j, int c)

finds the last occurrence of a character in a text.

text_rchr() finds the last occurrence of a character c in the specified range of a text s.
The range is specified by i and j. If found, text_rchr() returns the left position of the
found character. It returns 0 otherwise. For example, given the following text:

1 2 3 4 5 6 7 (positive positions)
e v e n t s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_rchr(t, -6, 5, ’e’) gives 3 while text_rchr(t, -6, 5, ’s’) does 0. The "r" in its name
stands for "right" since what it does can be seen as scanning a given text from the right
end.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s

Parameters:

← s text in which character is to be found

← i range specified

← j range specified

← c character to find

Returns:

left positive position of found character or 0

6.2.4.15 void text_restore (text_save_t ∗∗ save)

restores a saved state of the text space.

text_restore() gets the text space to a state returned by text_save(). As explained in
text_save(), any text and state generated after saving the state to be reverted are invali-
dated, thus they should not be used. See text_save() for more details.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid saved state given for save

Parameters:

← save pointer to saved state of text space

Returns:

nothing

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.2 text.h File Reference 45

6.2.4.16 text_t text_reverse (text_t s)

constructs a text by reversing a text.

text_reverse() constructs a text by reversing a given text.

Possible exceptions: assert_exceptfail, memory_exceptfail

Unchecked errors: invalid text given for s

Warning:

text_reverse() does not change a given text, but creates a new text by reversing a
given text.

Parameters:

← s text to reverse

Returns:

reversed text

6.2.4.17 int text_rfind (text_t s, int i, int j, text_t str)

finds the last occurrence of a text in a text.

text_rfind() finds the last occurrence of a text str in the specified range of a text s.
The range is specified by i and j. If found, text_rfind() returns the left position of
the character starting the found text. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_rfind(t, -6, 6, text_box("ca", 2)) gives 3. If str is empty, text_rfind() always
succeeds and returns the right positive position of the specified range.

The "r" in its name stands for "right" since what it does can be seen as scanning a given
text from the right end.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or str

Parameters:

← s text in which another text is to be found
← i range specified
← j range specified
← str text to find

Returns:

left positive position of found text or 0

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

46 File Documentation

6.2.4.18 int text_rmany (text_t s, int i, int j, text_t set)

finds the start of a span consisted of characters from a set.

If the specified range of a text s ends with a character from a set set, text_rmany()
returns the left positive position starting a span consisted of characters from the set.
The range is specified by i and j. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_rmany(t, 3, 7, text_box("aos", 3)) gives 4. The "r" in its name stands for "right"
since what it does can be seen as scanning a given text from the right end. If the set
containing characters to find is empty, text_rmany() always fails and returns 0.

Since text_rmany() checks the range ends with a character from a given set, text_-
rmany() is often called after text_rupto().

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or set

Parameters:

← s text in which character to be found

← i range specified

← j range specified

← set set text containing characters to find

Returns:

right positive position of span or 0

6.2.4.19 int text_rmatch (text_t s, int i, int j, text_t str)

checks if a text ends with another text.

If the specified range of a text s ends with a text str, text_rmatch() returns the left
positive position starting the matched text. The range is specified by i and j. It returns
0 otherwise. For example, given the following text:

1 2 3 4 5 6 7 (positive positions)
c a c a o s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_rmatch(t, 3, 7, text_box("os", 2)) gives 5. If str is empty, text_rmatch() always
succeeds and returns the right positive position of the specified range.

The "r" in its name stands for "right" since what it does can be seen as scanning a given
text from the right end.

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.2 text.h File Reference 47

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or str

Parameters:

← s text in which another text to be found

← i range specified

← j range specified

← str text to find

Returns:

left positive position starting matched text or 0

6.2.4.20 int text_rupto (text_t s, int i, int j, text_t set)

finds the last occurrence of any character from a set in a text.

text_rupto() finds the last occurrence of any character from a set set in the specified
range of a text s. The range is specified by i and j. If found, text_rupto() returns
the left position of the found character. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
e v e n t s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_rupto(t, -6, 5, text_box("escape", 6)) gives 3. If the set containing characters to
find is empty, text_rupto() always fails and returns 0.

The "r" in its name stands for "right" since what it does can be seen as scanning a given
text from the right end.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or set

Parameters:

← s text in which character is to be found

← i range specified

← j range specified

← set set text containing characters to find

Returns:

left positive position of found character or 0

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

48 File Documentation

6.2.4.21 text_save_t∗ text_save (void)

saves the current top of the text space.

text_save() saves the current state of the text space and returns it. The text space to
provide storages for texts can be seen as a stack and storages allocated by text_∗()
(except that allocated by text_get()) can be seen as piled up in the stack, thus any
storage being used by the Text Library after a call to text_save() can be set free by
calling text_restore() with the saved state. After text_restore(), any text constructed
after the text_save() call is invalidated and should not be used. In addition, other saved
states, if any, get also invalidated if the text space gets back to a previous state by a
state saved before they are generated. For example, after the following code:

h = text_save();
...
g = text_save();
...
text_restore(h);

calling text_restore() with g makes the program behave in an unpredicatble way since
the last call to text_restore() with h invalidates g.

Possible exceptions: memory_exceptfail

Unchecked errors: none

Returns:

saved state of text space

Todo

Some improvements are possible and planned:

• text_save() and text_restore() can be improved to detect an erroneous call
shown in the above example;

• the stack-like storage management by text_save() and text_restore() unnec-
essarily keeps the Text Library from being used in ohter libraries. For exam-
ple, text_restore() invoked by a clean-up function of a library can destroy the
storage for texts that are still in use by a program. The approach used by the
Arena Library would be more appropriate.

6.2.4.22 text_t text_sub (text_t s, int i, int j)

constructs a sub-text of a text.

text_sub() constructs a sub-text from characters between two specified positions in a
text. Positions in a text are specified as in the Doubly-Linked List Library:

1 2 3 4 5 6 7 (positive positions)
s a m p l e

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

6.2 text.h File Reference 49

Given the above text, a sub-string amp can be specified as [2:5], [2:-2], [-5:5] or [-5:-2].
Furthermore, the order in which the positions are given does not matter, which means
[5:2] indicates the same sequence of characters as [2:5]. In conclusion, the following
calls to text_sub() gives the same sub-text.

text_sub(t, 2, 5);
text_sub(t, -5: 5);
text_sub(t, -2: -5);
text_sub(t, 2: -2);

Since a user is not allowed to modify the resulting text and it need not end with a null
character, text_sub() does not have to allocate storage for the result.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s

Warning:

Do not assume that the resulting text always share the same storage as the original
text. An implementation might change not to guarantee it, and there is already an
exception to that assumption - when text_sub() returns an empty text.

Parameters:

← s text from which sub-text to be constructed

← i position for sub-text

← j position for sub-text

Returns:

sub-text constructed

6.2.4.23 int text_upto (text_t s, int i, int j, text_t set)

finds the first occurrence of any character from a set in a text.

text_upto() finds the first occurrence of any character from a set set in the specified
range of a text s. The range is specified by i and j. If found, text_upto() returns
the left position of the found character. It returns 0 otherwise. For example, given the
following text:

1 2 3 4 5 6 7 (positive positions)
e v e n t s

-6 -5 -4 -3 -2 -1 0 (non-positive positions)

text_upto(t, -6, 5, text_box("vwxyz", 5)) gives 2. If the set containing characters to find
is empty, text_upto() always fails and returns 0.

Possible exceptions: assert_exceptfail

Unchecked errors: invalid text given for s or set

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

50 File Documentation

Parameters:

← s text in which character is to be found

← i range specified

← j range specified

← set set text containing characters to find

Returns:

left positive position of found character or 0

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

Index

len
text_t, 14

str
text_t, 14

SWAP
text.c, 18

text.c, 15
SWAP, 18
text_any, 18
text_box, 18
text_cat, 19
text_chr, 19
text_cmp, 20
text_dup, 20
text_find, 21
text_gen, 22
text_get, 22
text_many, 23
text_map, 23
text_match, 24
text_pos, 25
text_put, 25
text_rchr, 26
text_restore, 26
text_reverse, 27
text_rfind, 27
text_rmany, 28
text_rmatch, 28
text_rupto, 29
text_save, 30
text_sub, 30
text_upto, 31

text.h, 33
TEXT_ACCESS, 35
text_any, 36
text_box, 36
text_cat, 37
text_chr, 38
text_cmp, 38

text_dup, 39
text_find, 39
text_get, 40
text_many, 40
text_map, 41
text_match, 42
text_pos, 42
text_put, 43
text_rchr, 43
text_restore, 44
text_reverse, 44
text_rfind, 45
text_rmany, 45
text_rmatch, 46
text_rupto, 47
text_save, 47
text_save_t, 36
text_sub, 48
text_upto, 49

TEXT_ACCESS
text.h, 35

text_any
text.c, 18
text.h, 36

text_box
text.c, 18
text.h, 36

text_cat
text.c, 19
text.h, 37

text_chr
text.c, 19
text.h, 38

text_cmp
text.c, 20
text.h, 38

text_dup
text.c, 20
text.h, 39

text_find
text.c, 21

52 INDEX

text.h, 39
text_gen

text.c, 22
text_get

text.c, 22
text.h, 40

text_many
text.c, 23
text.h, 40

text_map
text.c, 23
text.h, 41

text_match
text.c, 24
text.h, 42

text_pos
text.c, 25
text.h, 42

text_put
text.c, 25
text.h, 43

text_rchr
text.c, 26
text.h, 43

text_restore
text.c, 26
text.h, 44

text_reverse
text.c, 27
text.h, 44

text_rfind
text.c, 27
text.h, 45

text_rmany
text.c, 28
text.h, 45

text_rmatch
text.c, 28
text.h, 46

text_rupto
text.c, 29
text.h, 47

text_save
text.c, 30
text.h, 47

text_save_t
text.h, 36

text_sub
text.c, 30
text.h, 48

text_t, 13
len, 14
str, 14

text_upto
text.c, 31
text.h, 49

Generated on Mon Jan 24 01:12:43 2011 for The Text Library by Doxygen

	C Basic Library: Text Library
	Introduction
	How to Use The Library
	Some Caveats

	Boilerplate Code
	Future Directions
	Replacing Stack-based Storage Management
	Minor Changes

	Contact Me
	Copyright

	Todo List
	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	text_t Struct Reference
	Detailed Description
	Field Documentation
	len
	str

	File Documentation
	text.c File Reference
	Detailed Description
	Define Documentation
	SWAP

	Function Documentation
	text_any
	text_box
	text_cat
	text_chr
	text_cmp
	text_dup
	text_find
	text_gen
	text_get
	text_many
	text_map
	text_match
	text_pos
	text_put
	text_rchr
	text_restore
	text_reverse
	text_rfind
	text_rmany
	text_rmatch
	text_rupto
	text_save
	text_sub
	text_upto

	text.h File Reference
	Detailed Description
	Define Documentation
	TEXT_ACCESS

	Typedef Documentation
	text_save_t

	Function Documentation
	text_any
	text_box
	text_cat
	text_chr
	text_cmp
	text_dup
	text_find
	text_get
	text_many
	text_map
	text_match
	text_pos
	text_put
	text_rchr
	text_restore
	text_reverse
	text_rfind
	text_rmany
	text_rmatch
	text_rupto
	text_save
	text_sub
	text_upto

