
The Stack Library
0.2.1

Generated by Doxygen 1.5.8

Mon Jan 24 01:13:00 2011

Contents

1 C Data Structure Library: Stack Library 1

1.1 Introduction . 1

1.2 How to Use The Library . 2

1.3 Boilerplate Code . 2

1.4 Future Directions . 3

1.5 Contact Me . 3

1.6 Copyright . 3

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 stack.c File Reference . 7

3.1.1 Detailed Description . 8

3.1.2 Function Documentation . 8

3.1.2.1 stack_empty . 8

3.1.2.2 stack_free . 8

3.1.2.3 stack_new . 9

3.1.2.4 stack_pop . 9

3.1.2.5 stack_push . 9

3.2 stack.h File Reference . 11

3.2.1 Detailed Description . 12

3.2.2 Function Documentation . 12

3.2.2.1 stack_empty . 12

3.2.2.2 stack_free . 12

3.2.2.3 stack_new . 13

ii CONTENTS

3.2.2.4 stack_pop . 13

3.2.2.5 stack_push . 13

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

Chapter 1

C Data Structure Library:
Stack Library

Version:

0.2.1

Author:

Jun Woong (woong.jun at gmail.com)

Date:

last modified on 2011-01-24

1.1 Introduction

This document specifies the Stack Library which belongs to the C Data Structure Li-
brary. The basic structure is from David Hanson’s book, "C Interfaces and Implemen-
tations." I modified the original implementation to enhance its readibility, for example
a prefix is used more strictly in order to avoid the user namespace pollution.

Since the book explains its design and implementation in a very comprehensive way,
not to mention the copyright issues, it is nothing but waste to repeat it here, so I finish
this document by giving introduction to the library; how to use the facilities is deeply
explained in files that define them.

The Stack Library reserves identifiers starting with stack_ and STACK_, and im-
ports the Assertion Library (which requires the Exception Handling Library) and the
Memory Management Library.

2 C Data Structure Library: Stack Library

1.2 How to Use The Library

The Stack Library is a typical implementation of a stack based on a liked list. Even
if its implementation is very similar to the List Library, the implementation details are
hidden behind an abstract type called stack_t because, unlike lists, revealing the
implementation of a stack hardly brings benefit. The storage used to maintain a stack
itself is managed by the library, but any storage allocated for data stored in a stack
should be managed by a user program.

Similarly for other data structure libraries, use of the Stack Library follows this se-
quence: create, use and destroy.

If functions that allocate storage fail memory allocation, an exception mem_-
exceptfail is raised; therefore functions never return a null pointer.

1.3 Boilerplate Code

Using a list starts with creating it. There is only one function provided to create a new
stack, stack_new(). Calling it returns a new and empty stack.

Once a stack has benn created, you can push data into or pop it from a stack using
stack_push() and stack_pop(), respectively. Because popping an empty stack triggers
an exception assert_exceptfail, calling stack_empty() is recommended to in-
spect if a stack is empty before applying stack_pop() to it.

stack_free() destroys a stack that is no longer necessary, but note that any storage that
is allocated by a user program does not get freed with it; stack_free() only returns back
the storage allocated by the library.

As an example, the following code creates a stack and pushes input characters into it
until EOF encountered. After that, it prints the characters by popping the characters
and destroy the stack.

int c;
char *p;
stack_t *mystack;

mystack = stack_new();
while ((c = getc(stdin)) != EOF) {

MEM_NEW(p);

*p = c;
stack_push(mystack, p);

}

while (!stack_empty(mystack)) {
p = stack_pop(mystack);
putchar(*p);
MEM_FREE(p);

}
putchar(’\n’);

stack_free(&mystack);

where MEM_NEW() and MEM_FREE() come from the Memory Management Li-

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

1.4 Future Directions 3

brary.

Note that before invoking stack_pop(), the stack is checked whether empty or not by
stack_empty() and that when popping characters, the storage allocated for them gets
freed.

1.4 Future Directions

No future change on this library planned yet.

1.5 Contact Me

Visit http://project.woong.org to get the lastest version of this library. Only
a small portion of my homepage (http://www.woong.org) is maintained in En-
glish, thus one who is not good at Korean would have difficulty when navigating most
of other pages served in Korean. If you think the information you are looking for is on
pages written in Korean you cannot read, do not hesitate to send me an email asking
for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and then I will reply as soon as possible.

1.6 Copyright

I do not wholly hold the copyright of this library; it is mostly held by David Hanson as
stated in his book, "C: Interfaces and Implementations:"

Copyright (c) 1994,1995,1996,1997 by David R. Hanson.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

For the parts I added or modified, the following applies:

Copyright (C) 2009-2011 by Jun Woong.

This package is a stack implementation by Jun Woong. The implementation was
written so as to conform with the Standard C published by ISO 9899:1990 and ISO
9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

http://project.woong.org
http://www.woong.org

4 C Data Structure Library: Stack Library

publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

stack.c (Source for Stack Library (CDSL)) 7
stack.h (Documentation for Stack Library (CDSL)) 11

6 File Index

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

Chapter 3

File Documentation

3.1 stack.c File Reference

Source for Stack Library (CDSL).

#include <stddef.h>

#include "cbl/assert.h"

#include "cbl/memory.h"

#include "stack.h"

Include dependency graph for stack.c:

Data Structures

• struct stack_t
• struct stack_t::stack_t::node

Functions

• stack_t ∗() stack_new (void)

creates a stack.

• int() stack_empty (const stack_t ∗stk)

inspects if a stack is empty.

8 File Documentation

• void() stack_push (stack_t ∗stk, void ∗data)
pushes data into a stack.

• void ∗() stack_pop (stack_t ∗stk)
pops data from a stack.

• void() stack_free (stack_t ∗∗stk)
destroys a stack.

3.1.1 Detailed Description

Source for Stack Library (CDSL).

3.1.2 Function Documentation

3.1.2.1 int() stack_empty (const stack_t ∗ stk)

inspects if a stack is empty.

stack_empty() inspects if a given stack is empty.

Possible exceptions: assert_exceptfail

Unchecked erros: foreign data structure given for stk

Parameters:

← stk stack to inspect

Returns:

whether stack is empty or not

Return values:

1 empty

0 not empty

3.1.2.2 void() stack_free (stack_t ∗∗ stk)

destroys a stack.

stack_free() deallocates all storages for a stack and set the pointer passed through stk
to a null pointer. Note that stack_free() does not deallocate any storage for the data in
the stack to destroy, which must be done by a user.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for stk

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

3.1 stack.c File Reference 9

Warning:

The storage allocated for data (whose address a stack’s node possesses) is never
touched; its allocation and deallocation is entirely up to the user.

Parameters:

↔ stk pointer to stack to destroy

Returns:

nothing

3.1.2.3 stack_t∗() stack_new (void)

creates a stack.

stack_new() creates a new stack and sets its relevant information to the initial.

Possible exceptions: mem_exceptfail

Unchecked errors: none

Returns:

created stack

3.1.2.4 void∗() stack_pop (stack_t ∗ stk)

pops data from a stack.

stack_pop() pops data from a given stack. If the stack is empty, an exception is raised
due to the assertion failure, so popping all data without knowing the number of nodes
remained in the stack needs to use stack_empty() to decide when to stop.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for stk

Parameters:

↔ stk stack from which data popped

Returns:

data popped from stack

3.1.2.5 void() stack_push (stack_t ∗ stk, void ∗ data)

pushes data into a stack.

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

10 File Documentation

stack_push() pushes data into the top of a stack. There is no explicit limit on the
maximum number of data that can be pushed into a stack.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign data structure given for stk

Parameters:

↔ stk stack into which given data pushed

← data data to push

Returns:

nothing

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

3.2 stack.h File Reference 11

3.2 stack.h File Reference

Documentation for Stack Library (CDSL).

This graph shows which files directly or indirectly include this file:

Typedefs

• typedef struct stack_t stack_t

represents a stack.

Functions

stack creating and destroying functions:

• stack_t ∗ stack_new (void)
creates a stack.

• void stack_free (stack_t ∗∗)
destroys a stack.

data handling functions:

• void stack_push (stack_t ∗, void ∗)
pushes data into a stack.

• void ∗ stack_pop (stack_t ∗)
pops data from a stack.

misc. functions:

• int stack_empty (const stack_t ∗)
inspects if a stack is empty.

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

12 File Documentation

3.2.1 Detailed Description

Documentation for Stack Library (CDSL).

Header for Stack Library (CDSL).

3.2.2 Function Documentation

3.2.2.1 int stack_empty (const stack_t ∗ stk)

inspects if a stack is empty.

stack_empty() inspects if a given stack is empty.

Possible exceptions: assert_exceptfail

Unchecked erros: foreign data structure given for stk

Parameters:

← stk stack to inspect

Returns:

whether stack is empty or not

Return values:

1 empty
0 not empty

3.2.2.2 void stack_free (stack_t ∗∗ stk)

destroys a stack.

stack_free() deallocates all storages for a stack and set the pointer passed through stk
to a null pointer. Note that stack_free() does not deallocate any storage for the data in
the stack to destroy, which must be done by a user.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for stk

Warning:

The storage allocated for data (whose address a stack’s node possesses) is never
touched; its allocation and deallocation is entirely up to the user.

Parameters:

↔ stk pointer to stack to destroy

Returns:

nothing

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

3.2 stack.h File Reference 13

3.2.2.3 stack_t∗ stack_new (void)

creates a stack.

stack_new() creates a new stack and sets its relevant information to the initial.

Possible exceptions: mem_exceptfail

Unchecked errors: none

Returns:

created stack

3.2.2.4 void∗ stack_pop (stack_t ∗ stk)

pops data from a stack.

stack_pop() pops data from a given stack. If the stack is empty, an exception is raised
due to the assertion failure, so popping all data without knowing the number of nodes
remained in the stack needs to use stack_empty() to decide when to stop.

Possible exceptions: assert_exceptfail

Unchecked errors: foreign data structure given for stk

Parameters:

↔ stk stack from which data popped

Returns:

data popped from stack

3.2.2.5 void stack_push (stack_t ∗ stk, void ∗ data)

pushes data into a stack.

stack_push() pushes data into the top of a stack. There is no explicit limit on the
maximum number of data that can be pushed into a stack.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign data structure given for stk

Parameters:

↔ stk stack into which given data pushed

← data data to push

Returns:

nothing

Generated on Mon Jan 24 01:13:00 2011 for The Stack Library by Doxygen

Index

stack.c, 7
stack_empty, 8
stack_free, 8
stack_new, 9
stack_pop, 9
stack_push, 9

stack.h, 11
stack_empty, 12
stack_free, 12
stack_new, 12
stack_pop, 13
stack_push, 13

stack_empty
stack.c, 8
stack.h, 12

stack_free
stack.c, 8
stack.h, 12

stack_new
stack.c, 9
stack.h, 12

stack_pop
stack.c, 9
stack.h, 13

stack_push
stack.c, 9
stack.h, 13

	C Data Structure Library: Stack Library
	Introduction
	How to Use The Library
	Boilerplate Code
	Future Directions
	Contact Me
	Copyright

	File Index
	File List

	File Documentation
	stack.c File Reference
	Detailed Description
	Function Documentation
	stack_empty
	stack_free
	stack_new
	stack_pop
	stack_push

	stack.h File Reference
	Detailed Description
	Function Documentation
	stack_empty
	stack_free
	stack_new
	stack_pop
	stack_push

