
The List Library
0.2.1

Generated by Doxygen 1.5.8

Mon Jan 24 01:12:56 2011

Contents

1 C Data Structure Library: List Library 1

1.1 Introduction . 1

1.2 How to Use The Library . 2

1.3 Boilerplate Code . 2

1.4 Future Directions . 4

1.4.1 Circular Lists . 4

1.5 Contact Me . 4

1.6 Copyright . 4

2 Todo List 7

3 Data Structure Index 9

3.1 Data Structures . 9

4 File Index 11

4.1 File List . 11

5 Data Structure Documentation 13

5.1 list_t Struct Reference . 13

5.1.1 Detailed Description . 13

5.1.2 Field Documentation . 14

5.1.2.1 data . 14

5.1.2.2 next . 14

6 File Documentation 15

6.1 list.c File Reference . 15

6.1.1 Detailed Description . 16

ii CONTENTS

6.1.2 Function Documentation . 16

6.1.2.1 list_append . 16

6.1.2.2 list_copy . 17

6.1.2.3 list_free . 17

6.1.2.4 list_length . 18

6.1.2.5 list_list . 18

6.1.2.6 list_map . 19

6.1.2.7 list_pop . 19

6.1.2.8 list_push . 20

6.1.2.9 list_reverse . 20

6.1.2.10 list_toarray . 21

6.2 list.h File Reference . 22

6.2.1 Detailed Description . 23

6.2.2 Define Documentation . 23

6.2.2.1 LIST_FOREACH 23

6.2.3 Function Documentation . 24

6.2.3.1 list_append . 24

6.2.3.2 list_copy . 25

6.2.3.3 list_free . 25

6.2.3.4 list_length . 26

6.2.3.5 list_list . 26

6.2.3.6 list_pop . 27

6.2.3.7 list_push . 27

6.2.3.8 list_reverse . 28

6.2.3.9 list_toarray . 28

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

Chapter 1

C Data Structure Library: List
Library

Version:

0.2.1

Author:

Jun Woong (woong.jun at gmail.com)

Date:

last modified on 2011-01-24

1.1 Introduction

This document specifies the List Library which belongs to the C Data Structure Li-
brary. The basic structure is from David Hanson’s book, "C Interfaces and Implemen-
tations." I modified the original implementation to make it more appropriate for my
other projects and to enhance its readibility; for example a prefix is used more strictly
in order to avoid the user namespace pollution.

Since the book explains its design and implementation in a very comprehensive way,
not to mention the copyright issues, it is nothing but waste to repeat it here, so I finish
this document by giving introduction to the library; how to use the facilities is deeply
explained in files that define them.

The List Library reserves identifiers starting with list_ and LIST_, and imports the
Assertion Library (which requires the Exception Handling Library) and the Memory
Management Library.

2 C Data Structure Library: List Library

1.2 How to Use The Library

The List Library is a typical implementation of a list in which nodes have one pointer to
their next nodes; a list with two pointers to its next and previous nodes is implemented
in the Doubly-Linked List Library. The storage used to maintain a list itself is managed
by the library, but any storage allocated for data stored in nodes should be managed by
a user program; the library provides functions to help it.

Similarly for other data structure libraries, use of the List Library follows this sequence:
create, use and destroy. Except for functions to inspect lists, all other functions do one
of them in various ways.

As oppsed to a doubly-linked list, a singly-linked list does not support random access,
thus there are facilities to aid sequential access to a list: list_toarray(), list_map() and
LIST_FOREACH(). These facilities help a user to convert a list to an array, call a
user-defined function for each node in a list and traverse a list.

As always, if functions that should allocate storage to finish their job fail memory
allocation, an exception mem_exceptfail is raised rather than returning an error
indicator like a null pointer.

The following paragraphs describe differences this library has when compared to other
data structure libraries.

In general, pointers that library functions take and return point to descriptors for the
data structure the library implements. Once an instance of the structure is created, the
location of a desciptor for it remains unchanged until destroyed. This property does
not hold for pointers that this library takes and returns. Those pointers in this library
point to the head node of a list rather than a descriptor for it. Because it can be replaced
as a result of operations like adding or removing a node, a user program is obliged to
update the pointer variable it passed with a returned one. Functions that accept a list
and return a modified list are list_push(), list_pop() and list_reverse().

A null pointer, which is considered invalid in other libraries, is a valid and only rep-
resentation for an empty list. This means creating a null pointer of the list_t ∗ type in
effect creats an empty list. You can freely pass it to any functions in this library and
they are guaranteed to work well with it. Because of this, functions to add data to a
list can be considered to also create lists; invoking them with a null pointer gives you
a list containing the given data. This includes list_list(), list_append(), list_push() and
list_copy().

It is considered good to hide implementation details behind an abstract type with only
interfaces exposed when designing and implementing a data structure. Exposing its
implementation to users often brings nothing beneficial but unnecessary dependency
on it. In this implementation, however, the author decided to expose its implementation
since its merits trumph demerits; see the book for more discussion on this issue.

1.3 Boilerplate Code

Using a list starts with creating it. If you need just an empty list, declaring a variable
of the list_t ∗ type and then making it a null pointer is enough to make one. list_list(),

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

1.3 Boilerplate Code 3

list_append(), list_push and list_copy() also create a list by providing a null-terminated
sequence of data for each node, combining two lists, pushing a node with a given data
to a list and duplicating a list. As noted, you can use a null pointer as arguments for
those functions.

Once a list has been created, a new node can be pushed (list_push()) and inspected
(list_pop()). list_pop() pops a node (that is, gets rid of a node with returning the data
in it). If you need to handle a list as if it were an array, list_toarray() converts a list to
a dynamically-allocated array. You can find the length of the resulting array by calling
list_length() or specifying a value used as a terminator (a null pointer in most cases).
A function, list_map() and a macro, LIST_FOREACH() also provide a way to access
nodes in sequence. list_reverse() reverses a list, which is useful when it is necessary to
repeatedly access a list in the reverse order.

list_free() destroys a list that is no longer necessary, but note that any storage that is
allocated by a user program does not get freed with it; list_free() only returns back the
storage allocated by the library.

As an example, the following code creates a list and stores input characters into each
node until EOF encountered. After read, it prints the characters twice by traversing the
list and converting it to an array. Since the last input character resides in the head node,
the list behaves like a stack, which is the reason list_push() and list_pop() are named
so. The list is then reversed and again prints the stored characters by popping nodes;
since it is reversed, the order in which character are printed out differs from the former
two cases.

int c;
int i;
char *p;
void *pv, **a;
list_t *mylist, *iter;

mylist = NULL;
while ((c = getc(stdin)) != EOF) {

MEM_NEW(p);

*p = c;
mylist = list_push(mylist, p);

}

LIST_FOREACH(iter, mylist) {
putchar(*(char *)iter->data);

}
putchar(’\n’);

a = list_toarray(mylist, NULL);
for (i = 0; a[i] != NULL; i++)

putchar(*(char *)a[i]);
putchar(’\n’);
MEM_FREE(a);

mylist = list_reverse(mylist);

while (list_length(mylist) > 0) {
mylist = list_pop(mylist, &pv);
putchar(*(char *)pv);
MEM_FREE(pv);

}
putchar(’\n’);

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

4 C Data Structure Library: List Library

list_free(&mylist);

where MEM_NEW() and MEM_FREE() come from the Memory Management Li-
brary.

In this example, the storage for each node is returned back when popping nodes from
the list. If list_map() were used instead to free storage, a call like this:

list_map(mylist, mylistfree, NULL);

would be used, where a call-back function, mylistfree() is defined as follows:

void mylistfree(void **pdata, void *ignored)
{

MEM_FREE(*pdata);
}

1.4 Future Directions

1.4.1 Circular Lists

Making lists circular enables appending a new node to them to be done in a constant
time. The current implementation where the last nodes point to nothing makes list_-
append() take time proportional to the number of nodes in a list, which is, in other
words, the time complexity of list_append() is O(N).

1.5 Contact Me

Visit http://project.woong.org to get the lastest version of this library. Only
a small portion of my homepage (http://www.woong.org) is maintained in En-
glish, thus one who is not good at Korean would have difficulty when navigating most
of other pages served in Korean. If you think the information you are looking for is on
pages written in Korean you cannot read, do not hesitate to send me an email asking
for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and then I will reply as soon as possible.

1.6 Copyright

I do not wholly hold the copyright of this library; it is mostly held by David Hanson as
stated in his book, "C: Interfaces and Implementations:"

Copyright (c) 1994,1995,1996,1997 by David R. Hanson.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

http://project.woong.org
http://www.woong.org

1.6 Copyright 5

without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

For the parts I added or modified, the following applies:

Copyright (C) 2009-2011 by Jun Woong.

This package is a singly-linked list implementation by Jun Woong. The implementation
was written so as to conform with the Standard C published by ISO 9899:1990 and ISO
9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

6 C Data Structure Library: List Library

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

Chapter 2

Todo List

8 Todo List

Global list_append Improvements are possible and planned:

• the time complexity of the current implementation is O(N) where N indi-
cates the number of nodes in a list. With a circular list, where the next node
of the last node set to the head node, it is possible for both pushing and
appending to be done in a constant time.

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

list_t (Node in a list) . 13

10 Data Structure Index

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

list.c (Source for List Library (CDSL)) . 15
list.h (Documentation for List Library (CDSL)) 22

12 File Index

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

Chapter 5

Data Structure Documentation

5.1 list_t Struct Reference

represents a node in a list.

#include <list.h>

Collaboration diagram for list_t:

Data Fields

• void ∗ data
• struct list_t ∗ next

5.1.1 Detailed Description

represents a node in a list.

This implementation for a linked list does not employ a separate data structure for the
head or tail node; see the implementation of the Doubly-Linked List Library for what
this means. By imposing on its users the responsability to make sure that a list given to
the library functions is appropriate for their tasks, it attains simpler implementation.

The detail of struct list_t is intentionally exposed to the users (as opposed to be
hidden in an opaque type) because doing so is more useful. For example, a user does
not need to complicate the code by calling, say, list_push() just in order to make a tem-
porary list node. Declaring it as having the type of list_t (as opposed to list_t
∗) is enough. In addition, an list_t object can be embedded in a user-created data
structure directly.

14 Data Structure Documentation

5.1.2 Field Documentation

5.1.2.1 void∗ list_t::data

pointer to data

5.1.2.2 struct list_t∗ list_t::next [read]

pointer to next node

The documentation for this struct was generated from the following file:

• list.h

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

Chapter 6

File Documentation

6.1 list.c File Reference

Source for List Library (CDSL).

#include <stdarg.h>

#include <stddef.h>

#include "cbl/assert.h"

#include "cbl/memory.h"

#include "list.h"

Include dependency graph for list.c:

Functions

• list_t ∗() list_push (list_t ∗list, void ∗data)

pushes a new node to a given list.

• list_t ∗() list_list (void ∗data,...)

constructs a new list using a given sequence of data.

• list_t ∗() list_append (list_t ∗list, list_t ∗tail)

appends a list to another.

16 File Documentation

• list_t ∗() list_copy (const list_t ∗list)
duplicates a list.

• list_t ∗() list_pop (list_t ∗list, void ∗∗pdata)
pops a node from a list and save its data (pointer) into a given pointer object.

• list_t ∗() list_reverse (list_t ∗list)
reverses a list.

• size_t() list_length (const list_t ∗list)
counts the length of a list.

• void() list_free (list_t ∗∗plist)
destroys a list.

• void() list_map (list_t ∗list, void apply(void ∗∗, void ∗), void ∗cl)
calls a user-provided function for each node in a list.

• void ∗∗() list_toarray (const list_t ∗list, void ∗end)
converts a list to an array.

6.1.1 Detailed Description

Source for List Library (CDSL).

6.1.2 Function Documentation

6.1.2.1 list_t∗() list_append (list_t ∗ list, list_t ∗ tail)

appends a list to another.

list_append() combines two lists by appending tail to list, which makes the next
pointer of the last node in list point to the first node of tail.

Possible exceptions: mem_exceptfail

Unchecked errors: foreign data structure given for list and tail

Warning:

Do not forget that a null pointer is considered an empty list, not an error.

Parameters:

↔ list list to which tail appended

← tail list to append to list

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

6.1 list.c File Reference 17

Returns:

appended list whose (pointer) value should be the same as list

Todo

Improvements are possible and planned:

• the time complexity of the current implementation is O(N) where N indicates
the number of nodes in a list. With a circular list, where the next node of the
last node set to the head node, it is possible for both pushing and appending
to be done in a constant time.

6.1.2.2 list_t∗() list_copy (const list_t ∗ list)

duplicates a list.

list_copy() creates a new list by copying nodes of list.

Possible exceptions: mem_exceptfail

Unchecked errors: foreign data structure given for list

Warning:

Note that the data pointed by nodes in list are not duplicated. An empty list
results in returning a null pointer, which means an empty list.

Parameters:

← list list to duplicate

Returns:

duplicated list

6.1.2.3 void() list_free (list_t ∗∗ plist)

destroys a list.

list_free() destroys a list by deallocating storages for each node. After the call the list
is empty, which means that it makes a null pointer. If plist points to a null pointer,
list_free() does nothing since it means an empty list.

Possible exceptions: none

Unchecked errors: pointer to foreign data structure given for plist

Warning:

Note that the type of plist is a double pointer to list_t.

Parameters:

↔ plist pointer to list to destroy

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

18 File Documentation

Returns:

nothing

6.1.2.4 size_t() list_length (const list_t ∗ list)

counts the length of a list.

list_length() counts the number of nodes in list.

Possible exceptions: none

Unchecked errors: foreign data structure given for list

Parameters:

← list list whose nodes counted

Returns:

length of list

Here is the caller graph for this function:

6.1.2.5 list_t∗() list_list (void ∗ data, ...)

constructs a new list using a given sequence of data.

list_list() constructs a list whose nodes contain a sequence of data given as arguments;
the first argument is stored in the head (first) node, the second argument in the second
node, and so on. There should be a way to mark the end of the argument list, which a
null pointer is for. Any argument following a null pointer argument is not invalid, but
ignored.

Possible exceptions: mem_exceptfail

Unchecked errors: none

Warning:

Calling list_list() with one argument, a null pointer, is not treated as an error. Such
a call requests an empty list, so returned; note that a null pointer is an empty list.

Parameters:

← data data to store in head node of new list
← ... other data to store in new list

Returns:

new list containing given sequence of data

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

6.1 list.c File Reference 19

6.1.2.6 void() list_map (list_t ∗ list, void applyvoid ∗∗, void ∗, void ∗ cl)

calls a user-provided function for each node in a list.

For each node in a list, list_map() calls a user-provided callback function; it is useful
when doing some common task for each node. The pointer given in cl is passed to
the second parameter of a user callback function, so can be used as a communication
channel between the caller of list_map() and the callback. Since the callback has the
address of data (as opposed to the value of data) through the first parameter, it is
free to change its content. One of cases where list_map() is useful is to deallocate
storages given for data of each node. Differently from the original implementation,
this library also provides a marco named LIST_FOREACH() that can be used in the
similar situation.

Possible exceptions: none (user-provided function may raise some)

Unchecked errors: foreign data structure given for list, user callback function doing
something wrong (see the warning below)

Warning:

Be wraned that modification to a list like pushing and popping a node before finish-
ing list_map() must be done very carefully and highly discouraged. For example,
in a callback function popping a node from the same list list_map() is applying to
may spoil subsequent tasks depending on which node list_map() is dealing with.
It is possible to provide a safer version, but not because such an operation is not
regarded as appropriate to the list.

Parameters:

↔ list list with which apply called
← apply user-provided function (callback)
← cl passing-by argument to apply

Returns:

nothing

6.1.2.7 list_t∗() list_pop (list_t ∗ list, void ∗∗ pdata)

pops a node from a list and save its data (pointer) into a given pointer object.

list_pop() copies a pointer value stored in the head node of list to a pointer object
pointed to by pdata and pops the node. If the given list is empty list_pop() does
nothing and just returns list. If pdata is a null pointer list_pop() just pops without
saving any data.

Possible exceptions: none

Unchecked errors: foreign data structure given for list

Parameters:

← list list from which head node popped

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

20 File Documentation

→ pdata points to pointer into which data (pointer value) stored

Warning:

The return value of list_pop() has to be used to update the variable for the list
passed. list_pop() takes a list and returns a modified list.

Returns:

list with its head node popped

6.1.2.8 list_t∗() list_push (list_t ∗ list, void ∗ data)

pushes a new node to a given list.

list_push() pushes a pointer value data to a given list list with creating a new node.
The null pointer given for list is considered to indicate an empty list, thus not treated
as an error.

Possible exceptions: mem_exceptfail

Unchecked errors: foreign data structure given for list

Parameters:

← list list to which data pushed

← data data to push into list

Warning:

The return value of list_push() has to be used to update the variable for the list
passed. list_push() takes a list and returns a modified list.

Returns:

modified list

6.1.2.9 list_t∗() list_reverse (list_t ∗ list)

reverses a list.

list_reverse() reverses a given list, which eventually makes its first node the last and
vice versa.

Possible exceptions: none

Unchecked errors: foreign data structure given for list

Parameters:

← list list to reverse

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

6.1 list.c File Reference 21

Warning:

The return value of list_reverse() has to be used to update the variable for the list
passed. list_reverse() takes a list and returns a reversed list.

Returns:

reversed list

6.1.2.10 void∗∗() list_toarray (const list_t ∗ list, void ∗ end)

converts a list to an array.

list_toarray() converts a given list to an array whose elements correspond to the data
stored in nodes of the list. This is useful when, say, sorting a list. A function like
array_tolist() is not necessary because it is easy to construct a list scanning elements of
an array, for example:

for (i = 0; i < ARRAY_SIZE; i++)
list = list_push(list, array[i]);

The last element of the constructed array is assigned by end, which is a null pointer in
most cases. Do not forget to deallocate the array when it is unnecessary.

Possible exceptions: mem_exceptfail

Unchecked errors: foreign data structure given for list

Warning:

The size of an array generated for an empty list is not zero, since there is always
an end-mark value.

Parameters:

← list list to convert to array

← end end-mark to save in last element of array

Returns:

array converted from list

Here is the call graph for this function:

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

22 File Documentation

6.2 list.h File Reference

Documentation for List Library (CDSL).

#include <stddef.h>

Include dependency graph for list.h:

This graph shows which files directly or indirectly include this file:

Data Structures

• struct list_t
represents a node in a list.

Defines

• #define LIST_FOREACH(pos, list) for ((pos) = (list); (pos); (pos)=(pos) →
next)

iterates for each node of a list

Functions

list creating functions:

• list_t ∗ list_list (void ∗,...)
constructs a new list using a given sequence of data.

• list_t ∗ list_append (list_t ∗, list_t ∗)
appends a list to another.

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

6.2 list.h File Reference 23

• list_t ∗ list_push (list_t ∗, void ∗)
pushes a new node to a given list.

• list_t ∗ list_copy (const list_t ∗)
duplicates a list.

data/information retrieving functions:

• list_t ∗ list_pop (list_t ∗, void ∗∗)
pops a node from a list and save its data (pointer) into a given pointer object.

• void ∗∗ list_toarray (const list_t ∗, void ∗)
converts a list to an array.

• size_t list_length (const list_t ∗)
counts the length of a list.

list destroying functions:

• void list_free (list_t ∗∗)
destroys a list.

list handling functions:

• void list_map (list_t ∗, void(void ∗∗, void ∗), void ∗)
• list_t ∗ list_reverse (list_t ∗)

reverses a list.

6.2.1 Detailed Description

Documentation for List Library (CDSL).

Header for List Library (CDSL).

6.2.2 Define Documentation

6.2.2.1 #define LIST_FOREACH(pos, list) for ((pos) = (list); (pos); (pos)=(pos)
→ next)

iterates for each node of a list

LIST_FOREACH() macro is useful when doing some task for every node of a list. For
example, the following example deallocates storages for data of each node in a list
named list and destroy list itself using list_free():

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

24 File Documentation

list_t *t;

LIST_FOREACH(t, list)
{

MEM_FREE(t->data);
}
list_free(list);

The braces enclosing the call to MEM_FREE are optional in this case as you may omit
them in the ordinary iterative statements. After the loop list is untouched and t
becomes indeterminate (if the loop finishes without jumping out of it, it should be a
null pointer). There are cases where LIST_FOREACH() is more convenient than list_-
map() but the latter is recommended.

Warning:

Be wraned that modification to a list like pushing and popping a node before fin-
ishing the loop must be done very carefully and highly discouraged. For example,
pushing a new node with t may invalidate the internal state of the list, popping
a node with list may invalidate t thus subsequent tasks depending on which
node t points to and so on. It is possible to provide a safer version of LIST_-
FOREACH() as done by Linux kernel’s list implementation, but not by this imple-
mentation for such an operation is not regarded as appropriate to the list.

6.2.3 Function Documentation

6.2.3.1 list_t∗ list_append (list_t ∗ list, list_t ∗ tail)

appends a list to another.

list_append() combines two lists by appending tail to list, which makes the next
pointer of the last node in list point to the first node of tail.

Possible exceptions: mem_exceptfail

Unchecked errors: foreign data structure given for list and tail

Warning:

Do not forget that a null pointer is considered an empty list, not an error.

Parameters:

↔ list list to which tail appended

← tail list to append to list

Returns:

appended list whose (pointer) value should be the same as list

Todo

Improvements are possible and planned:

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

6.2 list.h File Reference 25

• the time complexity of the current implementation is O(N) where N indicates
the number of nodes in a list. With a circular list, where the next node of the
last node set to the head node, it is possible for both pushing and appending
to be done in a constant time.

6.2.3.2 list_t∗ list_copy (const list_t ∗ list)

duplicates a list.

list_copy() creates a new list by copying nodes of list.

Possible exceptions: mem_exceptfail

Unchecked errors: foreign data structure given for list

Warning:

Note that the data pointed by nodes in list are not duplicated. An empty list
results in returning a null pointer, which means an empty list.

Parameters:

← list list to duplicate

Returns:

duplicated list

6.2.3.3 void list_free (list_t ∗∗ plist)

destroys a list.

list_free() destroys a list by deallocating storages for each node. After the call the list
is empty, which means that it makes a null pointer. If plist points to a null pointer,
list_free() does nothing since it means an empty list.

Possible exceptions: none

Unchecked errors: pointer to foreign data structure given for plist

Warning:

Note that the type of plist is a double pointer to list_t.

Parameters:

↔ plist pointer to list to destroy

Returns:

nothing

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

26 File Documentation

6.2.3.4 size_t list_length (const list_t ∗ list)

counts the length of a list.

list_length() counts the number of nodes in list.

Possible exceptions: none

Unchecked errors: foreign data structure given for list

Parameters:

← list list whose nodes counted

Returns:

length of list

Here is the caller graph for this function:

6.2.3.5 list_t∗ list_list (void ∗ data, ...)

constructs a new list using a given sequence of data.

list_list() constructs a list whose nodes contain a sequence of data given as arguments;
the first argument is stored in the head (first) node, the second argument in the second
node, and so on. There should be a way to mark the end of the argument list, which a
null pointer is for. Any argument following a null pointer argument is not invalid, but
ignored.

Possible exceptions: mem_exceptfail

Unchecked errors: none

Warning:

Calling list_list() with one argument, a null pointer, is not treated as an error. Such
a call requests an empty list, so returned; note that a null pointer is an empty list.

Parameters:

← data data to store in head node of new list

← ... other data to store in new list

Returns:

new list containing given sequence of data

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

6.2 list.h File Reference 27

6.2.3.6 list_t∗ list_pop (list_t ∗ list, void ∗∗ pdata)

pops a node from a list and save its data (pointer) into a given pointer object.

list_pop() copies a pointer value stored in the head node of list to a pointer object
pointed to by pdata and pops the node. If the given list is empty list_pop() does
nothing and just returns list. If pdata is a null pointer list_pop() just pops without
saving any data.

Possible exceptions: none

Unchecked errors: foreign data structure given for list

Parameters:

← list list from which head node popped

→ pdata points to pointer into which data (pointer value) stored

Warning:

The return value of list_pop() has to be used to update the variable for the list
passed. list_pop() takes a list and returns a modified list.

Returns:

list with its head node popped

6.2.3.7 list_t∗ list_push (list_t ∗ list, void ∗ data)

pushes a new node to a given list.

list_push() pushes a pointer value data to a given list list with creating a new node.
The null pointer given for list is considered to indicate an empty list, thus not treated
as an error.

Possible exceptions: mem_exceptfail

Unchecked errors: foreign data structure given for list

Parameters:

← list list to which data pushed

← data data to push into list

Warning:

The return value of list_push() has to be used to update the variable for the list
passed. list_push() takes a list and returns a modified list.

Returns:

modified list

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

28 File Documentation

6.2.3.8 list_t∗ list_reverse (list_t ∗ list)

reverses a list.

list_reverse() reverses a given list, which eventually makes its first node the last and
vice versa.

Possible exceptions: none

Unchecked errors: foreign data structure given for list

Parameters:

← list list to reverse

Warning:

The return value of list_reverse() has to be used to update the variable for the list
passed. list_reverse() takes a list and returns a reversed list.

Returns:

reversed list

6.2.3.9 void∗∗ list_toarray (const list_t ∗ list, void ∗ end)

converts a list to an array.

list_toarray() converts a given list to an array whose elements correspond to the data
stored in nodes of the list. This is useful when, say, sorting a list. A function like
array_tolist() is not necessary because it is easy to construct a list scanning elements of
an array, for example:

for (i = 0; i < ARRAY_SIZE; i++)
list = list_push(list, array[i]);

The last element of the constructed array is assigned by end, which is a null pointer in
most cases. Do not forget to deallocate the array when it is unnecessary.

Possible exceptions: mem_exceptfail

Unchecked errors: foreign data structure given for list

Warning:

The size of an array generated for an empty list is not zero, since there is always
an end-mark value.

Parameters:

← list list to convert to array

← end end-mark to save in last element of array

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

6.2 list.h File Reference 29

Returns:

array converted from list

Here is the call graph for this function:

Generated on Mon Jan 24 01:12:56 2011 for The List Library by Doxygen

Index

data
list_t, 14

list.c, 15
list_append, 16
list_copy, 17
list_free, 17
list_length, 18
list_list, 18
list_map, 18
list_pop, 19
list_push, 20
list_reverse, 20
list_toarray, 21

list.h, 22
list_append, 24
list_copy, 25
LIST_FOREACH, 23
list_free, 25
list_length, 25
list_list, 26
list_pop, 26
list_push, 27
list_reverse, 27
list_toarray, 28

list_append
list.c, 16
list.h, 24

list_copy
list.c, 17
list.h, 25

LIST_FOREACH
list.h, 23

list_free
list.c, 17
list.h, 25

list_length
list.c, 18
list.h, 25

list_list
list.c, 18

list.h, 26
list_map

list.c, 18
list_pop

list.c, 19
list.h, 26

list_push
list.c, 20
list.h, 27

list_reverse
list.c, 20
list.h, 27

list_t, 13
data, 14
next, 14

list_toarray
list.c, 21
list.h, 28

next
list_t, 14

	C Data Structure Library: List Library
	Introduction
	How to Use The Library
	Boilerplate Code
	Future Directions
	Circular Lists

	Contact Me
	Copyright

	Todo List
	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	list_t Struct Reference
	Detailed Description
	Field Documentation
	data
	next

	File Documentation
	list.c File Reference
	Detailed Description
	Function Documentation
	list_append
	list_copy
	list_free
	list_length
	list_list
	list_map
	list_pop
	list_push
	list_reverse
	list_toarray

	list.h File Reference
	Detailed Description
	Define Documentation
	LIST_FOREACH

	Function Documentation
	list_append
	list_copy
	list_free
	list_length
	list_list
	list_pop
	list_push
	list_reverse
	list_toarray

