
The Option Parsing Library
0.2.0

Generated by Doxygen 1.5.8

Mon Jan 24 01:13:15 2011

Contents

1 C Environment Library: Option Parsing Library 1

1.1 Introduction . 1

1.1.1 Concepts . 2

1.2 How to Use The Library . 2

1.2.1 Ordering Modes . 3

1.2.2 Option Description Tables 3

1.3 Boilerplate Code . 3

1.4 Future Directions . 6

1.5 Contact Me . 6

1.6 Copyright . 6

2 Data Structure Index 9

2.1 Data Structures . 9

3 File Index 11

3.1 File List . 11

4 Data Structure Documentation 13

4.1 opt_t Struct Reference . 13

4.1.1 Detailed Description . 13

4.1.2 Field Documentation . 16

4.1.2.1 arg . 16

4.1.2.2 flag . 16

4.1.2.3 lopt . 16

4.1.2.4 sopt . 16

5 File Documentation 17

ii CONTENTS

5.1 opt.c File Reference . 17

5.1.1 Detailed Description . 18

5.1.2 Function Documentation . 18

5.1.2.1 opt_abort . 18

5.1.2.2 opt_errmsg . 19

5.1.2.3 opt_free . 20

5.1.2.4 opt_init . 21

5.1.2.5 opt_parse . 22

5.2 opt.h File Reference . 24

5.2.1 Detailed Description . 25

5.2.2 Define Documentation . 25

5.2.2.1 OPT_ARG_NO 25

5.2.2.2 OPT_ARG_OPT 25

5.2.2.3 OPT_ARG_REQ 25

5.2.3 Enumeration Type Documentation 25

5.2.3.1 "@2 . 25

5.2.4 Function Documentation . 26

5.2.4.1 opt_abort . 26

5.2.4.2 opt_errmsg . 26

5.2.4.3 opt_free . 28

5.2.4.4 opt_init . 28

5.2.4.5 opt_parse . 29

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

Chapter 1

C Environment Library: Option
Parsing Library

Version:

0.2.0

Author:

Jun Woong (woong.jun at gmail.com)

Date:

last modified on 2011-01-24

1.1 Introduction

This document specifies the Option Parsing Library which belongs to the C Environ-
ment Library. This library is intended to implement all features of Linux’s getopt()
and getopt_long() in an integrated and thus more consistent fashion; the funtionality of
getopt() specified by POSIX is also subsumed by the library.

Precisely, this library:

• supports three ordering modes - argument permutation mode, POSIX-compliant
mode and "return-in-order" mode (see below);

• allows multiple scans of possibly multiple sets of program arguments;

• preserves the original program arguments in its original order;

• supports optional long-named options;

• supports optional short-named options; and

• supports abbreviated names for long-named options.

2 C Environment Library: Option Parsing Library

(Suppose that a program supports three long-named options "–html", "–html-false" and
"–html-true". For various incomple options given, the library behaves as intuitively as
possible, for example, "–html-f" is considered "–html-false", "–html" is recognized as it
is and "–html-" results in a warning for its ambiguity. This feature is called "abbreviated
names for long-named options.")

The Option Parsing Library reserves identifiers starting with opt_ and OPT_, and
imports no other libraries except for the standard library.

1.1.1 Concepts

There are several concepts used to specify the Option Parsing Library.

"Program arguments" or "arguments" for brevity refer to anything given to a program
being executed.

"Operands" refer to arguments not starting with a hyphen character or to "-" that de-
notes the standard input stream. These are sometimes referred to as "non-option argu-
ments."

"Options" refer to arguments starting with a hyphen character but excluding "-". "Short-
named options" are options that start with a single hyphen and have a single character
following as in "-x"; several short-named options can be grouped after a hyphen as in
"-xyz" which is equivalent to "-x -y -z". "Long-named options" are options that start
with two hyphens and have a non-empty character sequence following; for example,
"–long-option".

If an option takes an additional argument which may immediately follow (possibly with
an intervening equal sign) or appear as a separate argument, the argument is called an
"option-argument." For long-named options, option-arguments must follow an equal
sign unless they appear as separate ones. (See IEEE Std 1003.1, 2004 Edition, 12.
Utility Conventions.)

Warning:

Note that, if an option takes an option-argument that is negative thus starts with a
minus sign, the argument cannot be a separate one, since the separate argument is
to be recognized as another option.

An "option description table" is an array that has a sequence of options to recognize
and their properties.

1.2 How to Use The Library

Most programs parse program options in very similar ways. A typical way to handle
options is given as the boilerplate code below. You can simply copy it and modify to
add options your program supports to the option description table and case labels.

The storage used to parse program arguments is managed by the library.

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

1.3 Boilerplate Code 3

1.2.1 Ordering Modes

By default, the library processes options and operands as if they were permutated so
that operands always follow options. That is, the following two invocations of "util"
(where no options take option-arguments) are equivalent (i.e., program cannot tell the
difference):

util -a -b inputfile outputfile
util inputfile -a outputfile -b

This behavior canned "argument permutation," in most cases, helps users to flexibly
place options among operands. Some programs, however, require options always pro-
ceed operands; for example, given the following line,

util -a util2 -b

it might be wanted to interpret this as giving "-a" to "util" but "-b" to "util2" which
cannot be achieved with argument permutation. For such a case, this library provdes
two modes to keep the order in which options and operands are given: the POSIX-
compliant mode and the "return-in-order" mode which are denoted by REQUIRE_-
ORDER and RETURN_IN_ORDER in a typical implementation of getopt().

In the POSIX-compliant mode, parsing options stops immediately whenever an
operand is encountered. This behavior is what POSIX requires, as its name implies.

In the "return-in-order" mode, encountering operands makes the character valued 1
returned as if the operand is an option-argument for the option whose short name has
the value 1.

This ordering mode can be controlled by marking a desired ordering mode in an option
description table or setting an environment variable (see opt_t).

1.2.2 Option Description Tables

An option description table specifies what options should be recognized with their
long and short names and what should be done when encountering them, for example,
whether an additional option-argument is taken and what its type is, or whether a flag
is set and what should be stored into it. Including the ordering mode, all behaviors of
the library can be controlled by the table. See opt_t for more detailed explanation.

1.3 Boilerplate Code

Using the library starts with invoking opt_init(). It takes an option description table,
pointers to parameters of main(), a pointer to an object to which additional information
goes during parsing arguments, a default program name used when no program name
is available from the environment and a directory separator. If succeeds, it returns a
program name; it can be used to issue messages for example.

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

4 C Environment Library: Option Parsing Library

After the library initialized, opt_parse() insepcts each program argument and performs
what specified by the option description table for it. In most cases, this process is made
up of a loop containing jumps based on the return value of opt_parse().

As opt_prase() reports that all options have been inspected, a program is granted an
access to remaining non-option arguments. These operands are inspected as if they
were only arguments to the program.

Since opt_init() allocates storages for duplicating pointers to program arguments, opt_-
free() should be invoked in order to avoid memory leakage after handling operands has
finished.

opt_abort() is a function that stops recognization of options being performed by conf_-
parse(). All remaining options are regarded as operands. It is useful when a program
introduces an option stopper like "–" for its own purposes.

opt.c contains an example designed to use as many facilities of the library as possible
in a disabled part and a bolierplate code that is a simplified version of the example is
given here:

static struct {
const char *prgname;
int verbose;
...

} option;

int main(int argc, char *argv[])
{

opt_t tab[] = {
"verbose", 0, &(option.verbose), 1,
"add", ’a’, OPT_ARG_NO, OPT_TYPE_NO,
"create", ’c’, OPT_ARG_REQ, OPT_TYPE_STR,
"number", ’n’, OPT_ARG_OPT, OPT_TYPE_REAL,
"help", UCHAR_MAX+1, OPT_ARG_NO, OPT_TYPE_NO,
NULL,

}

option.prgname = opt_init(tab, &argc, &argv, &argptr, PRGNAME, ’/’);
if (!option.prgname) {

fprintf(stderr, "%s: failed to parse options\n", PRGNAME);
return EXIT_FAILURE;

}

while ((c = opt_parse()) != -1) {
switch(c) {

case ’a’:
... --add or -a given ...
break;

case ’c’:
printf("%s: option -c given with value ’%s’\n, option.prgname,

(const char *)argptr);
break;

case ’n’:
printf("%s: option -n given", option.prgname);
if (argptr)

printf(" with value ’%f’\n", *(const double *)argptr);
else

putchar(’\n’);
break;

case UCHAR_MAX+1:

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

1.3 Boilerplate Code 5

printf("%s: option --help given\n", option.prgname);
opt_free();
return 0;

case 0:
break;

case ’?’:
case ’-’:
case ’+’:
case ’*’:

fprintf(stderr, "%s: ", option.prgname);
fprintf(stderr, opt_errmsg(c), (const char *)argptr);
opt_free();
return EXIT_FAILURE;

default:
assert(!"not all options covered -- should never reach here");
break;

}
}

if (option.verbose)
puts("verbose flag is set");

if (argc > 1) {
printf("non-option ARGV-arguments:");
for (i = 1; i < argc; i++)

printf(" %s", argv[i]);
putchar(’\n’);

}

opt_free();

return 0;
}

The struct object option manages all objects set by program arguments. Note that it
has the static storage duration; since its member is used as an initializer for the option
description table that is an array, it has to have the static storage duration; C99 has
removed this restriction.

Each row in the option description table specifies options to recognize:

• "–verbose" has no short name and has a flag variable set to 1 when encountered;

• "–add" has a short name "-a" and takes no option-arguments;

• "–create" has a short name "-c" and requires an option-argument of the string
type;

• "–number" has a short name "-n" and takes an optional option-argument of the
real type; and

• "–help" has no short name and takes no option-arguments.

Because the failure of opt_init() means that memory allocation failed, you do not have
to call opt_free() before terminating the program.

The case labes above one handling 0 are for options given in tab. Those labels be-
low them are for exceptional cases and opt_errmsg() helps to construct appropriate

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

6 C Environment Library: Option Parsing Library

messages for them. In addtion, there are other ways to handle those cases; see opt_-
errmsg() for details. Remember that, if invoked, opt_free() should be invoked after all
program arguments including non-option arguments have been processed. Since opt_-
init() makes copies of pointers in argv and opt_free() releases storages for them, any
access to them gets invalidated by opt_free().

1.4 Future Directions

No future change on this library planned yet.

1.5 Contact Me

Visit http://project.woong.org to get the lastest version of this library. Only
a small portion of my homepage (http://www.woong.org) is maintained in En-
glish, thus one who is not good at Korean would have difficulty when navigating most
of other pages served in Korean. If you think the information you are looking for is on
pages written in Korean you cannot read, do not hesitate to send me an email asking
for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and then I will reply as soon as possible.

1.6 Copyright

Copyright (C) 2009-2011 by Jun Woong.

This package is an option parser implementation by Jun Woong. The implementation
was written so as to conform with the Standard C published by ISO 9899:1990 and
ISO 9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

http://project.woong.org
http://www.woong.org

1.6 Copyright 7

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

8 C Environment Library: Option Parsing Library

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

Chapter 2

Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

opt_t (Element of an option description table) 13

10 Data Structure Index

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

opt.c (Source for Option Parsing Library (CEL)) 17
opt.h (Documentation for Option Parsing Library (CEL)) 24

12 File Index

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

Chapter 4

Data Structure Documentation

4.1 opt_t Struct Reference

represents an element of an option description table.

#include <opt.h>

Data Fields

• char ∗ lopt
• int sopt
• int ∗ flag
• int arg

4.1.1 Detailed Description

represents an element of an option description table.

opt_t represents an element of an option description table that is used for a user
program to specify options and their properties. A option description table is an array
of opt_t, each element of which is consisted of four members, two of which have
overloaded meanings:

• lopt: long-named option that can be invoked by two precedeeing hypens; op-
tional if a short-named option given; however, encouraged to always provide a
long-named option

• sopt: short-named option that can be invoked by a precedeeing hypens; op-
tional if both a long-named option and a flag variable provided

• flag: if an option does not take an additional argument, flag can point to
an object (called "flag variable") that is set to the value of arg when lopt or
sopt option encountered; if an option can take an additional argument, flag

14 Data Structure Documentation

specifies whether the option-argument is mandatory (with OPT_ARG_REQ) or
optional (with OPT_ARG_OPT)

• arg: if an option does not take an additional argument, arg has the value to
be stored into a flag variable when lopt or sopt option encountered; if an
option can take an additional argument, arg specifies the type of the option-
argument using OPT_TYPE_BOOL (option-arguments starting with ’t’, ’T’, ’y’,
’Y’ and ’1’ means true and others false, int), OPT_TYPE_INT (signed inte-
ger, long), OPT_TYPE_UINT (unsigned integer, unsigned long), OPT_TYPE_-
REAL (floating-point number, double) and OPT_TYPE_STR (string, char ∗)

To mark an end of the table, the lopt member of the last element has to be set to a
null pointer. If the flag member points to a flag variable, the pointed integer object is
initalized to be 0 by opt_init().

For OPT_TYPE_INT and OPT_TYPE_UINT, the conversion of a given option-
argument recognizes the C-style prefixes; numbers starting with 0 are treated as octal,
and those with 0x or 0X are treated as hexadecimal.

Some examples follow:

opt_t options[] = {
{ "verbose", ’v’, &option_verbose, 1 },
{ "brief", ’b’, &option_verbose, 0 },
{ NULL, }

};

This example says that two options ("–verbose" or "-v" and "–brief" or "-b") are recog-
nized and option_verbose is set to 1 when "–verbose" or "-v" given, and set to 0
when "–brief" or "-b" given.

opt_t options[] = {
"version", ’v’, OPT_ARG_NO, OPT_TYPE_NO,
"help", UCHAR_MAX+1, OPT_ARG_NO, OPT_TYPE_NO,
"morehelp", UCHAR_MAX+2, OPT_ARG_NO, OPT_TYPE_NO,
NULL,

};

This example shows options that do not take any additional arguments. Setting the
flag member to a null pointer also says the option takes no argument in which case
the value of the arg member ignored. Thus, the above example can be written as
follows without any change on the behavior:

opt_t options[] = {
"version", ’v’, NULL, 0,
"help", UCHAR_MAX+1, NULL, 0,
"morehelp", UCHAR_MAX+2, NULL, 0,
NULL,

};

where you can put any integer in the place of 0. The former is preferred, however, since
it shows more explicitly the fact that no additional arguments consumed after each of
the options.

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

4.1 opt_t Struct Reference 15

When only long-named options need to be provided without introducing flag variables,
values from UCHAR_MAX+1 to INT_MAX (inclusive) can be used for the sopt mem-
ber; both are defined in <limits.h>. (Even if the C standard does not require UCHAR_-
MAX less than INT_MAX, many parts of C, especially, of the standard library cannot
work correctly without such a relationship on a hosted implementation.)

opt_t options[] = {
"", ’x’, OPT_ARG_NO, OPT_TYPE_NO,
NULL,

};

On the other hand, providing an empty string for the lopt member as in this example
can specify that an option is only short-named. Note that, however, this is discouraged;
long-named options are much more user-friendly especially for novices.

opt_t options[] = {
"input", ’i’, OPT_ARG_REQ, OPT_TYPE_STR,
"port", ’p’, OPT_ARG_REQ, OPT_TYPE_UINT,
"start", ’s’, OPT_ARG_REQ, OPT_TYPE_REAL,
"end", ’e’, OPT_ARG_REQ, OPT_TYPE_REAL,
NULL,

};

This example shows options that take additional arguments. OPT_ARG_REQ for the
flag member specifies that the option requires an option-argument and that the type
of the argument is given in the arg member. For OPT_TYPE_INT, OPT_TYPE_-
UINT and OPT_TYPE_REAL, strtol(), strtoul() and strtod() are respectively used to
convert option-arguments.

opt_t options[] = {
"negative", ’n’, OPT_ARG_OPT, OPT_TYPE_REAL,
NULL,

};

This table specifies the option "–negative" or "-n" takes an optionally given argument.
If an option-argument with the expected form (which is determined by strtod() in this
case) follows the option, it is taken. If there is no argument, or is an argument but has
no expected form, the option works as if OPT_ARG_OPT and OPT_TYPE_REAL are
replaced by OPT_ARG_NO and OPT_TYPE_NO.

The following examples show how to control the ordering mode.

opt_t options[] = {
"+", 0, OPT_ARG_NO, OPT_TYPE_NO,
...
NULL,

};

Setting the first long-named option to "+" or setting the environment variable named
POSIXLY_CORRECT says option processing performed by opt_parse() immediately
stops whenever an operand encountered (which POSIX requires).

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

16 Data Structure Documentation

opt_t options[] = {
"-", 0, OPT_ARG_NO, OPT_TYPE_NO,
...
NULL,

};

In addition, setting the first long-named option to "-" makes opt_parse() returns the
character valued 1 when encounters an operand as if the operand is an option-argument
for the option whose short name has the value 1.

4.1.2 Field Documentation

4.1.2.1 int opt_t::arg

value for flag variable or type of additional argument

4.1.2.2 int∗ opt_t::flag

pointer to flag varible or information about additional argument

4.1.2.3 char∗ opt_t::lopt

long-named option (optional for some cases)

4.1.2.4 int opt_t::sopt

short-named option (optional for some cases)

The documentation for this struct was generated from the following file:

• opt.h

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

Chapter 5

File Documentation

5.1 opt.c File Reference

Source for Option Parsing Library (CEL).

#include <assert.h>

#include <ctype.h>

#include <errno.h>

#include <limits.h>

#include <stddef.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "opt.h"

Include dependency graph for opt.c:

Defines

• #define UC(x) ((unsigned char ∗)(x))

Enumerations

• enum {

18 File Documentation

INVALID, DMINUS, SHORTOPT, LONGOPT,

OPERAND }
• enum { PERMUTE, REQUIRE_ORDER, RETURN_IN_ORDER }

Functions

• const char ∗() opt_init (const opt_t ∗o, int ∗pc, char ∗∗pv[], const void ∗∗pa,
const char ∗name, int sep)

prepares to start parsing program arguments.

• int() opt_parse (void)

parses program options.

• void() opt_abort (void)

aborts parsing options.

• const char ∗ opt_errmsg (int c)

returns a diagnostic format string for an error code.

• void() opt_free (void)

cleans up any storage used and disables the internal state.

Variables

• enum { ... } order
• int opt_arg_req
• int opt_arg_no
• int opt_arg_opt

5.1.1 Detailed Description

Source for Option Parsing Library (CEL).

5.1.2 Function Documentation

5.1.2.1 void() opt_abort (void)

aborts parsing options.

opt_abort() aborts parsing options immediately handling the remaining arguments as
operands. Having invoked opt_abort(), opt_parse() need not be called to access to
operands; argc and @ argv are properly adjusted as if opt_parse() has returned -
1 except that the remaining options (if any) are treated as operands. If opt_parse()
invoked after aborting the parsing, opt_parse() does nothing and returns -1.

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

5.1 opt.c File Reference 19

Returns:

nothing

5.1.2.2 const char∗ opt_errmsg (int c)

returns a diagnostic format string for an error code.

Given an error code that is one of ’?’, ’-’, ’+’ and ’∗’, opt_errmsg() returns a string
that can be used as a format string for the printf() family. A typical way to handle
exceptional cases opt_parse() may return is as follows:

switch(c) {
... cases for valid options ...
case 0:

break;
case ’?’:

fprintf(stderr, "%s: unknown option ’%s’\n", option.prgname, (const char *)argptr);
opt_free();
return EXIT_FAILURE;

case ’-’:
fprintf(stderr, "%s: no or invalid argument given for ’%s’\n", option.prgname,

(const char *)argptr);
opt_free();
return EXIT_FAILURE;

case ’+’:
fprintf(stderr, "%s: option ’%s’ takes no argument\n", option.prgname,

(const char *)argptr);
opt_free();
return EXIT_FAILURE;

case ’*’:
fprintf(stderr, "%s: ambiguous option ’%s’\n", option.prgname,

(const char *)argptr);
opt_free();
return EXIT_FAILURE;

default:
assert(!"not all options covered -- should never reach here");
break;

}

where "case 0" is for options that sets a flag variable so in most cases leaves nothing
for a user code to do. The following four case labels handle erroneous cases and the
default case is there to handle what is never supposed to happen.

As repeating this construct for every program using this library is cumbersome, for
convenience opt_errmsg() is provided to handle those four erroneous cases as follows:

switch(c) {
... cases for valid options ...
case 0:

break;
case ’?’:
case ’-’:
case ’+’:
case ’*’:

fprintf(stderr, "%s: ", option.prgname);
fprintf(stderr, opt_errmsg(c), (const char *)argptr);

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

20 File Documentation

opt_free();
return EXIT_FAILURE;

default:
assert(!"not all options covered -- should never reach here");
break;

}

or more compatly:

switch(c) {
... cases for valid options ...
case 0:

break;
default:

fprintf(stderr, "%s: ", option.prgname);
fprintf(stderr, opt_errmsg(c), (const char *)argptr);
opt_free();
return EXIT_FAILURE;

}

The difference of the last two is that the latter turns the assertion in the former (that
possibly gets dropped from the delivery code) into a defensive check (that does not).
Note that the returned format string contains a newline.

If a user needs flexibility on the format of diagnostics or actions done in those cases,
resort to the cumbersome method shown first.

Possible exceptions: none

Unchecked errors: none

Parameters:

← c error code opt_parse() returned

Returns:

format string for diagnostic message

5.1.2.3 void() opt_free (void)

cleans up any storage used and disables the internal state.

opt_free() cleans up any storage allocated by opt_init() and used by opt_parse(). It also
initializes the internal state, which allows for multiple scans; see opt_init() for some
caveat when scanning options multiple times.

Warning:

opt_free(), if invoked, should be invoked after all arguments including operands
have been processed. Since opt_init() makes copies of pointers in argv of main(),
and opt_free() releases storages for them, any access to them gets invalidated by
opt_free().

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

5.1 opt.c File Reference 21

Possible exceptions: none

Unchecked errors: none

Returns:

nothing

5.1.2.4 const char∗() opt_init (const opt_t ∗ o, int ∗ pc, char ∗∗ pv[], const void
∗∗ pa, const char ∗ name, int sep)

prepares to start parsing program arguments.

opt_init() prepares to start parsing program arguments. It takes everything necessary
to parse arguments and sets the internal state properly that is referred to by opt_parse()
later. It also constructs a more readable program name by omitting any path preceeding
the pure name. To do this job, it takes a directory separator character through sep and
a default program name through name that is used when no name is available through
argv. A typical use of opt_init() is given at the commented-out example code in the
source file.

On success, opt_init() returns a program name (non-null pointer). On failure, it returns
the null pointer; opt_init() may fail only when allocating small-sized storage fails, in
which case further execution of the program is very likely to fail due to the same prob-
lem.

opt_init() can be called again for multiple scans of options, but only after opt_free()
has been invoked. Note that, in such a case, only the internal state and flag variables
given with an option description table are initialized. Other objects probably used for
processing options in a user code retain their values, thus should be initialized explicitly
by a user code. A convenient way to handle that initialization is to introduce a structure
grouping all such objects. For example:

struct option {
int html;
const char *input;
double val;
...

} option;

where, say, html is a flag variable for –html, input is an argument for -i or –input,
val is an argument for -n or –number, and so on. By assigning a properly initialized
value to the structure, the initialization can be readily done:

For C90:
struct option empty = { 0, };
option = empty;

For C99:
option = (struct option){ 0, };

Note that, in this example, the object option should have the static storage duration
in order for the html member to be given as an initalizer for an option description
table; C99 has no such restriction.

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

22 File Documentation

Possible exceptions: none

Unchecked errors: non-null but invalid arguments given

Parameters:

← o option description table

← pc pointer to argc

← pv pointer to argv

← pa pointer to object to contain argument or erroneous option

← name default program name

← sep directory separator (e.g., ’/’ on UNIX-like systems)

Returns:

program name or null pointer

Return values:

non-null program name

null failure

5.1.2.5 int() opt_parse (void)

parses program options.

opt_parse() parses program options. In typical cases, the caller of opt_parse() has to
behave based on the result of opt_parse() that is one of:

• ’?’: unrecognized option; the pointer given to opt_init() through pa points to a
string that represents the option

• ’-’: valid option, but no option-argument given even if the option requires it, or
invalid option-argument given; the pointer given to opt_init() through pa points
to a string that represents the option

• ’+’: valid option, but an option-argument given even if the option takes none; the
pointer given to opt_init() through pa points to a string that represents the option

• ’∗’: ambiguious option; it is impossible to identify a unique option with the given
prefix of a long-named option

• 0: valid option; a given flag variable is set properly, thus nothing for a user code
to do

• -1: all options have been processed

• 1: (only when the first long-named option is "-") an operand is given; the pointer
given to opt_init() through pa points to the operand

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

5.1 opt.c File Reference 23

This means that a valid short-named option cannot have the value of ’?’, ’-’, ’+’, ’∗’, -1
or 1; 0 is allowed to say no short-named option given when a flag variable is provided;
see opt_t for details. In addition, ’=’ cannot also be used.

If an option takes an option-argument, the pointer whose address passed to opt_init()
through pa is set to point to the argument. A subsequent call to opt_parse() may
overwrite it unless the type is OPT_TYPE_STR.

After opt_parse() returns -1, argc and argv (precisely, objects whose addresses are
passed to opt_init() through pc and pv) are adjusted for a user code to process remain-
ing operands as if there were no options or option-arguments in program arguments;
see the commented-out example code given in the source file. Once opt_parse() starts
the parsing, argc and the elements of argv are indeterminate, thus an access to them
is not allowed.

opt_parse() changes neither the original contents of argv nor strings pointed to by
the elements of argv, thus by granting copies of argc and argv to opt_init() as
in the following example, a user code can access to program arguments unchanged if
necessary even after options have been parsed by opt_parse().

int main(int argc, char *argv[])
{

const void *arg;
int argc2 = argc;
char **argv2 = argv;
...
pname = opt_init(options, &argc2, &argv2, &arg, "program", ’/’);
while (opt_parse() != -1) {

...
}

for (i = 1; i < argc2; i++)
printf("operands: %s\n", argv2[i]);

opt_free();

for (i = 1; i < argc; i++)
printf("untouched program arguments: %s\n", argv[i]);

...
}

Warning:

opt_init() has to be invoked successfully before calling opt_parse().

Possible exceptions: none

Unchecked errors: argc or argv modified by a user between calls to opt_parse(),
modifying an object containing an option-argument or a problematic option

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

24 File Documentation

5.2 opt.h File Reference

Documentation for Option Parsing Library (CEL).

This graph shows which files directly or indirectly include this file:

Data Structures

• struct opt_t

represents an element of an option description table.

Defines

macros for describing option-arguments; see @c opt_t

• #define OPT_ARG_REQ (&opt_arg_req)
• #define OPT_ARG_NO (&opt_arg_no)
• #define OPT_ARG_OPT (&opt_arg_opt)

Enumerations

• enum {

OPT_TYPE_NO, OPT_TYPE_BOOL, OPT_TYPE_INT, OPT_TYPE_UINT,

OPT_TYPE_REAL, OPT_TYPE_STR }

defines enum contants for types of argument conversion.

Functions

option processing functions:

• const char ∗ opt_init (const opt_t ∗, int ∗, char ∗∗[], const void ∗∗, const char
∗, int)

prepares to start parsing program arguments.

• int opt_parse (void)
parses program options.

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

5.2 opt.h File Reference 25

• void opt_abort (void)
aborts parsing options.

• const char ∗ opt_errmsg (int)
returns a diagnostic format string for an error code.

• void opt_free (void)
cleans up any storage used and disables the internal state.

Variables

• int opt_arg_req
• int opt_arg_no
• int opt_arg_opt

5.2.1 Detailed Description

Documentation for Option Parsing Library (CEL).

Header for Option Parsing Library (CEL).

5.2.2 Define Documentation

5.2.2.1 #define OPT_ARG_NO (&opt_arg_no)

no argument taken

5.2.2.2 #define OPT_ARG_OPT (&opt_arg_opt)

optional argument

5.2.2.3 #define OPT_ARG_REQ (&opt_arg_req)

mandatory argument

5.2.3 Enumeration Type Documentation

5.2.3.1 anonymous enum

defines enum contants for types of argument conversion.

Enumerator:

OPT_TYPE_NO cannot have type

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

26 File Documentation

OPT_TYPE_BOOL has boolean (int) type

OPT_TYPE_INT has integer (long) type

OPT_TYPE_UINT has unsigned integer (unsigned long) type

OPT_TYPE_REAL has floating-point (double) type

OPT_TYPE_STR has string (char ∗) type

5.2.4 Function Documentation

5.2.4.1 void opt_abort (void)

aborts parsing options.

opt_abort() aborts parsing options immediately handling the remaining arguments as
operands. Having invoked opt_abort(), opt_parse() need not be called to access to
operands; argc and @ argv are properly adjusted as if opt_parse() has returned -
1 except that the remaining options (if any) are treated as operands. If opt_parse()
invoked after aborting the parsing, opt_parse() does nothing and returns -1.

Returns:

nothing

5.2.4.2 const char∗ opt_errmsg (int c)

returns a diagnostic format string for an error code.

Given an error code that is one of ’?’, ’-’, ’+’ and ’∗’, opt_errmsg() returns a string
that can be used as a format string for the printf() family. A typical way to handle
exceptional cases opt_parse() may return is as follows:

switch(c) {
... cases for valid options ...
case 0:

break;
case ’?’:

fprintf(stderr, "%s: unknown option ’%s’\n", option.prgname, (const char *)argptr);
opt_free();
return EXIT_FAILURE;

case ’-’:
fprintf(stderr, "%s: no or invalid argument given for ’%s’\n", option.prgname,

(const char *)argptr);
opt_free();
return EXIT_FAILURE;

case ’+’:
fprintf(stderr, "%s: option ’%s’ takes no argument\n", option.prgname,

(const char *)argptr);
opt_free();
return EXIT_FAILURE;

case ’*’:
fprintf(stderr, "%s: ambiguous option ’%s’\n", option.prgname,

(const char *)argptr);
opt_free();

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

5.2 opt.h File Reference 27

return EXIT_FAILURE;
default:

assert(!"not all options covered -- should never reach here");
break;

}

where "case 0" is for options that sets a flag variable so in most cases leaves nothing
for a user code to do. The following four case labels handle erroneous cases and the
default case is there to handle what is never supposed to happen.

As repeating this construct for every program using this library is cumbersome, for
convenience opt_errmsg() is provided to handle those four erroneous cases as follows:

switch(c) {
... cases for valid options ...
case 0:

break;
case ’?’:
case ’-’:
case ’+’:
case ’*’:

fprintf(stderr, "%s: ", option.prgname);
fprintf(stderr, opt_errmsg(c), (const char *)argptr);
opt_free();
return EXIT_FAILURE;

default:
assert(!"not all options covered -- should never reach here");
break;

}

or more compatly:

switch(c) {
... cases for valid options ...
case 0:

break;
default:

fprintf(stderr, "%s: ", option.prgname);
fprintf(stderr, opt_errmsg(c), (const char *)argptr);
opt_free();
return EXIT_FAILURE;

}

The difference of the last two is that the latter turns the assertion in the former (that
possibly gets dropped from the delivery code) into a defensive check (that does not).
Note that the returned format string contains a newline.

If a user needs flexibility on the format of diagnostics or actions done in those cases,
resort to the cumbersome method shown first.

Possible exceptions: none

Unchecked errors: none

Parameters:

← c error code opt_parse() returned

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

28 File Documentation

Returns:

format string for diagnostic message

5.2.4.3 void opt_free (void)

cleans up any storage used and disables the internal state.

opt_free() cleans up any storage allocated by opt_init() and used by opt_parse(). It also
initializes the internal state, which allows for multiple scans; see opt_init() for some
caveat when scanning options multiple times.

Warning:

opt_free(), if invoked, should be invoked after all arguments including operands
have been processed. Since opt_init() makes copies of pointers in argv of main(),
and opt_free() releases storages for them, any access to them gets invalidated by
opt_free().

Possible exceptions: none

Unchecked errors: none

Returns:

nothing

5.2.4.4 const char∗ opt_init (const opt_t ∗ o, int ∗ pc, char ∗∗ pv[], const void
∗∗ pa, const char ∗ name, int sep)

prepares to start parsing program arguments.

opt_init() prepares to start parsing program arguments. It takes everything necessary
to parse arguments and sets the internal state properly that is referred to by opt_parse()
later. It also constructs a more readable program name by omitting any path preceeding
the pure name. To do this job, it takes a directory separator character through sep and
a default program name through name that is used when no name is available through
argv. A typical use of opt_init() is given at the commented-out example code in the
source file.

On success, opt_init() returns a program name (non-null pointer). On failure, it returns
the null pointer; opt_init() may fail only when allocating small-sized storage fails, in
which case further execution of the program is very likely to fail due to the same prob-
lem.

opt_init() can be called again for multiple scans of options, but only after opt_free()
has been invoked. Note that, in such a case, only the internal state and flag variables
given with an option description table are initialized. Other objects probably used for
processing options in a user code retain their values, thus should be initialized explicitly
by a user code. A convenient way to handle that initialization is to introduce a structure
grouping all such objects. For example:

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

5.2 opt.h File Reference 29

struct option {
int html;
const char *input;
double val;
...

} option;

where, say, html is a flag variable for –html, input is an argument for -i or –input,
val is an argument for -n or –number, and so on. By assigning a properly initialized
value to the structure, the initialization can be readily done:

For C90:
struct option empty = { 0, };
option = empty;

For C99:
option = (struct option){ 0, };

Note that, in this example, the object option should have the static storage duration
in order for the html member to be given as an initalizer for an option description
table; C99 has no such restriction.

Possible exceptions: none

Unchecked errors: non-null but invalid arguments given

Parameters:

← o option description table

← pc pointer to argc

← pv pointer to argv

← pa pointer to object to contain argument or erroneous option

← name default program name

← sep directory separator (e.g., ’/’ on UNIX-like systems)

Returns:

program name or null pointer

Return values:

non-null program name

null failure

5.2.4.5 int opt_parse (void)

parses program options.

opt_parse() parses program options. In typical cases, the caller of opt_parse() has to
behave based on the result of opt_parse() that is one of:

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

30 File Documentation

• ’?’: unrecognized option; the pointer given to opt_init() through pa points to a
string that represents the option

• ’-’: valid option, but no option-argument given even if the option requires it, or
invalid option-argument given; the pointer given to opt_init() through pa points
to a string that represents the option

• ’+’: valid option, but an option-argument given even if the option takes none; the
pointer given to opt_init() through pa points to a string that represents the option

• ’∗’: ambiguious option; it is impossible to identify a unique option with the given
prefix of a long-named option

• 0: valid option; a given flag variable is set properly, thus nothing for a user code
to do

• -1: all options have been processed

• 1: (only when the first long-named option is "-") an operand is given; the pointer
given to opt_init() through pa points to the operand

This means that a valid short-named option cannot have the value of ’?’, ’-’, ’+’, ’∗’, -1
or 1; 0 is allowed to say no short-named option given when a flag variable is provided;
see opt_t for details. In addition, ’=’ cannot also be used.

If an option takes an option-argument, the pointer whose address passed to opt_init()
through pa is set to point to the argument. A subsequent call to opt_parse() may
overwrite it unless the type is OPT_TYPE_STR.

After opt_parse() returns -1, argc and argv (precisely, objects whose addresses are
passed to opt_init() through pc and pv) are adjusted for a user code to process remain-
ing operands as if there were no options or option-arguments in program arguments;
see the commented-out example code given in the source file. Once opt_parse() starts
the parsing, argc and the elements of argv are indeterminate, thus an access to them
is not allowed.

opt_parse() changes neither the original contents of argv nor strings pointed to by
the elements of argv, thus by granting copies of argc and argv to opt_init() as
in the following example, a user code can access to program arguments unchanged if
necessary even after options have been parsed by opt_parse().

int main(int argc, char *argv[])
{

const void *arg;
int argc2 = argc;
char **argv2 = argv;
...
pname = opt_init(options, &argc2, &argv2, &arg, "program", ’/’);
while (opt_parse() != -1) {

...
}

for (i = 1; i < argc2; i++)
printf("operands: %s\n", argv2[i]);

opt_free();

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

5.2 opt.h File Reference 31

for (i = 1; i < argc; i++)
printf("untouched program arguments: %s\n", argv[i]);

...
}

Warning:

opt_init() has to be invoked successfully before calling opt_parse().

Possible exceptions: none

Unchecked errors: argc or argv modified by a user between calls to opt_parse(),
modifying an object containing an option-argument or a problematic option

Generated on Mon Jan 24 01:13:15 2011 for The Option Parsing Library by Doxygen

Index

arg
opt_t, 16

flag
opt_t, 16

lopt
opt_t, 16

opt.c, 17
opt_abort, 18
opt_errmsg, 19
opt_free, 20
opt_init, 21
opt_parse, 22

opt.h, 24
OPT_TYPE_BOOL, 25
OPT_TYPE_INT, 26
OPT_TYPE_NO, 25
OPT_TYPE_REAL, 26
OPT_TYPE_STR, 26
OPT_TYPE_UINT, 26
opt_abort, 26
OPT_ARG_NO, 25
OPT_ARG_OPT, 25
OPT_ARG_REQ, 25
opt_errmsg, 26
opt_free, 28
opt_init, 28
opt_parse, 29

OPT_TYPE_BOOL
opt.h, 25

OPT_TYPE_INT
opt.h, 26

OPT_TYPE_NO
opt.h, 25

OPT_TYPE_REAL
opt.h, 26

OPT_TYPE_STR
opt.h, 26

OPT_TYPE_UINT

opt.h, 26
opt_abort

opt.c, 18
opt.h, 26

OPT_ARG_NO
opt.h, 25

OPT_ARG_OPT
opt.h, 25

OPT_ARG_REQ
opt.h, 25

opt_errmsg
opt.c, 19
opt.h, 26

opt_free
opt.c, 20
opt.h, 28

opt_init
opt.c, 21
opt.h, 28

opt_parse
opt.c, 22
opt.h, 29

opt_t, 13
arg, 16
flag, 16
lopt, 16
sopt, 16

sopt
opt_t, 16

	C Environment Library: Option Parsing Library
	Introduction
	Concepts

	How to Use The Library
	Ordering Modes
	Option Description Tables

	Boilerplate Code
	Future Directions
	Contact Me
	Copyright

	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	opt_t Struct Reference
	Detailed Description
	Field Documentation
	arg
	flag
	lopt
	sopt

	File Documentation
	opt.c File Reference
	Detailed Description
	Function Documentation
	opt_abort
	opt_errmsg
	opt_free
	opt_init
	opt_parse

	opt.h File Reference
	Detailed Description
	Define Documentation
	OPT_ARG_NO
	OPT_ARG_OPT
	OPT_ARG_REQ

	Enumeration Type Documentation
	"@2

	Function Documentation
	opt_abort
	opt_errmsg
	opt_free
	opt_init
	opt_parse

