
The Hash Library
0.2.1

Generated by Doxygen 1.5.8

Mon Jan 24 01:12:52 2011

Contents

1 C Data Structure Library: Hash Library 1

1.1 Introduction . 1

1.2 How to Use The Library . 2

1.2.1 Some Caveats . 2

1.3 Boilerplate Code . 2

1.4 Future Directions . 3

1.5 Contact Me . 3

1.6 Copyright . 3

2 File Index 5

2.1 File List . 5

3 File Documentation 7

3.1 hash.c File Reference . 7

3.1.1 Detailed Description . 8

3.1.2 Function Documentation . 8

3.1.2.1 hash_aload . 8

3.1.2.2 hash_free . 9

3.1.2.3 hash_int . 9

3.1.2.4 hash_length . 10

3.1.2.5 hash_new . 10

3.1.2.6 hash_reset . 11

3.1.2.7 hash_string . 11

3.1.2.8 hash_vload . 12

3.2 hash.h File Reference . 13

3.2.1 Detailed Description . 14

ii CONTENTS

3.2.2 Function Documentation . 14

3.2.2.1 hash_aload . 14

3.2.2.2 hash_free . 14

3.2.2.3 hash_int . 15

3.2.2.4 hash_length . 15

3.2.2.5 hash_new . 16

3.2.2.6 hash_reset . 16

3.2.2.7 hash_string . 17

3.2.2.8 hash_vload . 17

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

Chapter 1

C Data Structure Library: Hash
Library

Version:

0.2.1

Author:

Jun Woong (woong.jun at gmail.com)

Date:

last modified on 2011-01-24

1.1 Introduction

This document specifies the Hash Library which belongs to the C Data Structure Li-
brary. The basic structure is from David Hanson’s book, "C Interfaces and Implemen-
tations." I modified the original implementation to make it more appropriate for my
other projects, to speed up operations, to add missing but useulf facilities and to en-
hance its readibility; for example a prefix is used more strictly in order to avoid the user
namespace pollution.

Since the book explains its design and implementation in a very comprehensive way,
not to mention the copyright issues, it is nothing but waste to repeat it here, so I finish
this document by giving introduction to the library; how to use the facilities is deeply
explained in files that define them.

The Hash Library reserves identifiers starting with hash_ and HASH_, and imports the
Assertion Library (which requires the Exception Handling Library) and the Memory
Management Library.

2 C Data Structure Library: Hash Library

1.2 How to Use The Library

The Hash Library implements a hash table and is one of the most frequently used
libraries; it is essential to get a hash key for datum before putting it into a table by the
Table Library or a set by the Set Library. The storage used to maintain the hash table
is managed by the library and no function in the library demands memory allocation
done by user code.

The Hash Library provides one global hash table, so that there is no function that
creates a table or destroy it. A user can start to use the hash table without its creation
just by putting data to it using an appropriate function: hash_string() for C strings,
hash_int() for signed integers and hash_new() for other arbitrary forms of data. Of
course, since the library internally allocates storage to manage hash keys and values,
functions to remove a certain key from the table and to completely clean up the table
are offered: hash_free() and hash_reset(). In addition, since strings are very often used
to generate hash keys for them, hash_vload() and hash_aload() are provided and useful
especially when preloading several strings onto the table.

1.2.1 Some Caveats

A common mistake made when using the Hash Library is to pass data to functions that
expect a hash key without making one. For example, table_put() in the Table Library
requires its second argument be a hash key but it is likely to careless write this code to
put to a table referred to as mytable a string key and its relevant value:

char *key, *val;
...
table_put(mytable, key, val);

This code, however, does not work because the second argument to table_put() should
be a hash key not a raw string. Thus, the correct one should be:

table_put(mytable, hash_string(key), val);

One more thing to note is that hash_string() and similar functions to generate a hash
key is an actual function. If a hash key obtained from your data is frequently used in
code, it is better for efficiency to have it in a variable rather than to call hash_string()
several times.

If your compiler rejects to compile the library with a diagnostic including "scatter[]
assumes UCHAR_MAX < 256!" which says CHAR_BIT (the number of bits in a
byte) in your environment is larger than 8, you have to add elements to the array
scatter to make its total number match the number of characters in your imple-
mentation. scatter is used to map a character to a random number. For how to
generate the array, see the explanation given for the array in code.

1.3 Boilerplate Code

No boilerplate code is provided for this library.

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

1.4 Future Directions 3

1.4 Future Directions

No future change on this library planned yet.

1.5 Contact Me

Visit http://project.woong.org to get the lastest version of this library. Only
a small portion of my homepage (http://www.woong.org) is maintained in En-
glish, thus one who is not good at Korean would have difficulty when navigating most
of other pages served in Korean. If you think the information you are looking for is on
pages written in Korean you cannot read, do not hesitate to send me an email asking
for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and then I will reply as soon as possible.

1.6 Copyright

I do not wholly hold the copyright of this library; it is mostly held by David Hanson as
stated in his book, "C: Interfaces and Implementations:"

Copyright (c) 1994,1995,1996,1997 by David R. Hanson.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

For the parts I added or modified, the following applies:

Copyright (C) 2009-2011 by Jun Woong.

This package is a hash table implementation by Jun Woong. The implementation was
written so as to conform with the Standard C published by ISO 9899:1990 and ISO
9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

http://project.woong.org
http://www.woong.org

4 C Data Structure Library: Hash Library

RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

hash.c (Source for Hash Library (CDSL)) 7
hash.h (Documentation for Hash Library (CDSL)) 13

6 File Index

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

Chapter 3

File Documentation

3.1 hash.c File Reference

Source for Hash Library (CDSL).

#include <stddef.h>

#include <stdio.h>

#include <string.h>

#include <limits.h>

#include <stdarg.h>

#include "cbl/assert.h"

#include "cbl/memory.h"

#include "hash.h"

Include dependency graph for hash.c:

Data Structures

• struct hash_t

8 File Documentation

Functions

• const char ∗() hash_string (const char ∗str)

returns a hash string for a string.

• const char ∗() hash_int (long n)

returns a hash string for a signed integer.

• const char ∗() hash_new (const char ∗byte, size_t len)

returns a hash string for a byte sequence.

• size_t() hash_length (const char ∗byte)

returns the length of a hash string.

• void() hash_free (const char ∗byte)

deallocates storage for a hash string.

• void() hash_reset (void)

resets the hash table by deallocating all hash strings in it.

• void hash_vload (const char ∗str,...)

puts a sequence of strings to the hash table.

• void hash_aload (const char ∗strs[])

puts given strings to the hash table.

3.1.1 Detailed Description

Source for Hash Library (CDSL).

3.1.2 Function Documentation

3.1.2.1 void hash_aload (const char ∗ strs[])

puts given strings to the hash table.

hash_aload() takes strings from an array of strings (precisely, an array of pointers to
char) and puts them into the hash table. Since the function does not take the size of
the string array there should be a way to mark end of the array, which a null pointer is
for. hash_aload() is useful when a program needs to preload some strings to the hash
table for later use. A variadic version is also provided; see hash_vload().

Possible exceptions: mem_exceptfail

Unchecked errors: none

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

3.1 hash.c File Reference 9

Parameters:

← strs array of null-terminated strings

Returns:

nothing

Here is the call graph for this function:

3.1.2.2 void() hash_free (const char ∗ byte)

deallocates storage for a hash string.

hash_free() deallocates storage for a hash string, which effectively eliminates a hash
string from the hash table. This facility is not used so frequently by user code that the
original implementation did not provide it.

Possible exceptions: assert_exceptfail

Unchecked errors: hash string modified by user given for byte

Parameters:

← byte hash string to remove

Returns:

nothing

3.1.2.3 const char∗() hash_int (long n)

returns a hash string for a signed integer.

hash_int() returns a hash string for a given, possibly signed, integer whose type is
long.

Possible exceptions: mem_exceptfail

Unchecked errors: none

Parameters:

← n integer for which hash string returned

Returns:

hash string for integer

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

10 File Documentation

Here is the call graph for this function:

3.1.2.4 size_t() hash_length (const char ∗ byte)

returns the length of a hash string.

Given a hash string, hash_length() returns its length.

Possible exceptions: assert_exceptfail

Unchecked errors: hash string modified by user given for byte, foreign string given
for byte (only for faster version)

Parameters:

← byte byte sequence whose length returned

Returns:

length of byte sequence

3.1.2.5 const char∗() hash_new (const char ∗ byte, size_t len)

returns a hash string for a byte sequence.

hash_new() returns a hash string for a given byte sequence, which may not end with a
null character or may have a null character embedded in it. Even if it has "new" in its
name, hash_new() just returns the existing hash string if there is already one created for
the same byte sequence, which means there is only one instance of each byte sequence
in the hash table and which is what hashing is for.

An empty byte sequence which contains nothing and whose length is 0 is also valid.
But remember that byte has a valid pointer value by pointing to a valid object even
when len is zero, since C allows no zero-sized object.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: hash string modified by user given for byte

Warning:

It leads to an unpredictable result to modify a hash string returned by the library.

Parameters:

← byte byte sequence for which hash string returned

← len length of byte sequence

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

3.1 hash.c File Reference 11

Returns:

hash string for byte sequence

Here is the caller graph for this function:

3.1.2.6 void() hash_reset (void)

resets the hash table by deallocating all hash strings in it.

hash_reset() deallocates all hash strings in the hash table and thus resets it.

Possible exceptions: none

Unchecked errors: none

Returns:

nothing

3.1.2.7 const char∗() hash_string (const char ∗ str)

returns a hash string for a string.

hash_string() returns a hash string for a given null-terminated string. It is equivalent to
call hash_new() with the string and its length counted by strlen(). Note that the trailing
null character is not counted and it is appended when storing into the hash table. An
empty string which is consisted only of a null character is also a valid argument for
hash_string(); see hash_new() for details.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

← str null-terminated string for which hash string returned

Returns:

hash string for string

Here is the call graph for this function:

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

12 File Documentation

Here is the caller graph for this function:

3.1.2.8 void hash_vload (const char ∗ str, ...)

puts a sequence of strings to the hash table.

hash_vload() takes a possibly empty sequence of null-terminated strings and puts them
into the hash table. There should be a way to mark the end of the argument list, which a
null pointer is for. hash_vload() is useful when a program needs to preload some strings
to the hash table for later use. An array-version of hash_vload() is also provided; see
hash_aload().

Possible exceptions: mem_exceptfail

Unchecked errors: none

Parameters:

← str null-terminated string to put to hash table

← ... other such strings to put to hash table

Returns:

nothing

Here is the call graph for this function:

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

3.2 hash.h File Reference 13

3.2 hash.h File Reference

Documentation for Hash Library (CDSL).

#include <stddef.h>

Include dependency graph for hash.h:

This graph shows which files directly or indirectly include this file:

Functions

hash string creating functions:

• const char ∗ hash_string (const char ∗)
returns a hash string for a string.

• const char ∗ hash_int (long)
returns a hash string for a signed integer.

• const char ∗ hash_new (const char ∗, size_t)
returns a hash string for a byte sequence.

• void hash_vload (const char ∗,...)
puts a sequence of strings to the hash table.

• void hash_aload (const char ∗[])
puts given strings to the hash table.

hash destroying functions:

• void hash_free (const char ∗)
deallocates storage for a hash string.

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

14 File Documentation

• void hash_reset (void)
resets the hash table by deallocating all hash strings in it.

misc. functions:

• size_t hash_length (const char ∗)
returns the length of a hash string.

3.2.1 Detailed Description

Documentation for Hash Library (CDSL).

Header for Hash Library (CDSL).

3.2.2 Function Documentation

3.2.2.1 void hash_aload (const char ∗ strs[])

puts given strings to the hash table.

hash_aload() takes strings from an array of strings (precisely, an array of pointers to
char) and puts them into the hash table. Since the function does not take the size of
the string array there should be a way to mark end of the array, which a null pointer is
for. hash_aload() is useful when a program needs to preload some strings to the hash
table for later use. A variadic version is also provided; see hash_vload().

Possible exceptions: mem_exceptfail

Unchecked errors: none

Parameters:

← strs array of null-terminated strings

Returns:

nothing

Here is the call graph for this function:

3.2.2.2 void hash_free (const char ∗ byte)

deallocates storage for a hash string.

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

3.2 hash.h File Reference 15

hash_free() deallocates storage for a hash string, which effectively eliminates a hash
string from the hash table. This facility is not used so frequently by user code that the
original implementation did not provide it.

Possible exceptions: assert_exceptfail

Unchecked errors: hash string modified by user given for byte

Parameters:

← byte hash string to remove

Returns:

nothing

3.2.2.3 const char∗ hash_int (long n)

returns a hash string for a signed integer.

hash_int() returns a hash string for a given, possibly signed, integer whose type is
long.

Possible exceptions: mem_exceptfail

Unchecked errors: none

Parameters:

← n integer for which hash string returned

Returns:

hash string for integer

Here is the call graph for this function:

3.2.2.4 size_t hash_length (const char ∗ byte)

returns the length of a hash string.

Given a hash string, hash_length() returns its length.

Possible exceptions: assert_exceptfail

Unchecked errors: hash string modified by user given for byte, foreign string given
for byte (only for faster version)

Parameters:

← byte byte sequence whose length returned

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

16 File Documentation

Returns:

length of byte sequence

3.2.2.5 const char∗ hash_new (const char ∗ byte, size_t len)

returns a hash string for a byte sequence.

hash_new() returns a hash string for a given byte sequence, which may not end with a
null character or may have a null character embedded in it. Even if it has "new" in its
name, hash_new() just returns the existing hash string if there is already one created for
the same byte sequence, which means there is only one instance of each byte sequence
in the hash table and which is what hashing is for.

An empty byte sequence which contains nothing and whose length is 0 is also valid.
But remember that byte has a valid pointer value by pointing to a valid object even
when len is zero, since C allows no zero-sized object.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: hash string modified by user given for byte

Warning:

It leads to an unpredictable result to modify a hash string returned by the library.

Parameters:

← byte byte sequence for which hash string returned

← len length of byte sequence

Returns:

hash string for byte sequence

Here is the caller graph for this function:

3.2.2.6 void hash_reset (void)

resets the hash table by deallocating all hash strings in it.

hash_reset() deallocates all hash strings in the hash table and thus resets it.

Possible exceptions: none

Unchecked errors: none

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

3.2 hash.h File Reference 17

Returns:

nothing

3.2.2.7 const char∗ hash_string (const char ∗ str)

returns a hash string for a string.

hash_string() returns a hash string for a given null-terminated string. It is equivalent to
call hash_new() with the string and its length counted by strlen(). Note that the trailing
null character is not counted and it is appended when storing into the hash table. An
empty string which is consisted only of a null character is also a valid argument for
hash_string(); see hash_new() for details.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

← str null-terminated string for which hash string returned

Returns:

hash string for string

Here is the call graph for this function:

Here is the caller graph for this function:

3.2.2.8 void hash_vload (const char ∗ str, ...)

puts a sequence of strings to the hash table.

hash_vload() takes a possibly empty sequence of null-terminated strings and puts them
into the hash table. There should be a way to mark the end of the argument list, which a
null pointer is for. hash_vload() is useful when a program needs to preload some strings
to the hash table for later use. An array-version of hash_vload() is also provided; see
hash_aload().

Possible exceptions: mem_exceptfail

Unchecked errors: none

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

18 File Documentation

Parameters:

← str null-terminated string to put to hash table

← ... other such strings to put to hash table

Returns:

nothing

Here is the call graph for this function:

Generated on Mon Jan 24 01:12:52 2011 for The Hash Library by Doxygen

Index

hash.c, 7
hash_aload, 8
hash_free, 9
hash_int, 9
hash_length, 10
hash_new, 10
hash_reset, 11
hash_string, 11
hash_vload, 12

hash.h, 13
hash_aload, 14
hash_free, 14
hash_int, 15
hash_length, 15
hash_new, 16
hash_reset, 16
hash_string, 17
hash_vload, 17

hash_aload
hash.c, 8
hash.h, 14

hash_free
hash.c, 9
hash.h, 14

hash_int
hash.c, 9
hash.h, 15

hash_length
hash.c, 10
hash.h, 15

hash_new
hash.c, 10
hash.h, 16

hash_reset
hash.c, 11
hash.h, 16

hash_string
hash.c, 11
hash.h, 17

hash_vload
hash.c, 12

hash.h, 17

	C Data Structure Library: Hash Library
	Introduction
	How to Use The Library
	Some Caveats

	Boilerplate Code
	Future Directions
	Contact Me
	Copyright

	File Index
	File List

	File Documentation
	hash.c File Reference
	Detailed Description
	Function Documentation
	hash_aload
	hash_free
	hash_int
	hash_length
	hash_new
	hash_reset
	hash_string
	hash_vload

	hash.h File Reference
	Detailed Description
	Function Documentation
	hash_aload
	hash_free
	hash_int
	hash_length
	hash_new
	hash_reset
	hash_string
	hash_vload

