The Memory Management Library
0.2.1

Generated by Doxygen 1.5.8

Mon Jan 24 01:12:38 2011

Contents

1 C Basic Library: Memory Management Library 1
I.1 Introduction 1

1.2 HowtoUseTheLibrary 2
1.2.1 TwoVersions v v vt it 3

1.2.2 Debugging Version 3

1.23 ProductVersion 3

124 SomeCaveats e 3

1.3 Boilerplate Code 4

1.4 Future Directions 4
1.41 Minor Changes 4

1.5 ContactMe 4

1.6 Copyright 4

2 Todo List 7
3 Data Structure Index 9
3.1 DataStructureso e 9

4 File Index 11
4.1 FileList 11

5 Data Structure Documentation 13
5.1 mem_loginfo_t Struct Reference 13
5.1.1 Detailed Description 13

5.1.2 Field Documentation 14

5121 afile 14

5122 afunco 14

ii CONTENTS
5.1.23 aline 14

5124 asize 14

5125 dfile. . ..o o 14

5.12.6 ifunc oo 14

5127 idline oo 15

5028 p oo 15

5129 size. 15

6 File Documentation 17
6.1 memory.c FileReference 17
6.1.1 Detailed Description 18

6.1.2 Function Documentation 18
6.1.2.1 mem_alloc 18

6.1.22 mem_calloc, 19

6.1.23 mem_free, 19

6.1.2.4 mem_resize 20

6.2 memory.h File Reference 22
6.2.1 Detailed Description 23

6.2.2 Define Documentation 24
6221 MEMFREE. 24

6222 MEM_NEW 24

6.223 MEM_NEWO 25

6.224 MEM_RESIZE 25

6.2.3 Function Documentation 25
6231 mem_alloc 25

6.23.2 mem_calloc 26

6233 mem_free, 27

6234 mem_resize 29

6.3 memoryd.c File Reference 31
6.3.1 Detailed Description 32

6.3.2 Define Documentation 32
6.3.2.1 RAISE_EXCEPT_IF_INVALID 32

6.3.3 Function Documentation 33
6.33.1 mem_alloc, 33

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

CONTENTS

ii

6.3.3.2
6.3.3.3
6.3.34
6.3.3.5
6.3.3.6

mem calloc 33
mem_free 34
mem_leak 34
mem_log 35
MEM_TESIZE v v v e e o e e e e e 36

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

Chapter 1

C Basic Library: Memory
Management Library

Version:

0.2.1

Author:

Jun Woong (woong.jun at gmail.com)

Date:
last modified on 2010-01-24

1.1 Introduction

This document specifies the Memory Management Library which belongs to the C
Basic Library. The basic structure is from David Hanson’s book, "C Interfaces and
Implementations." I modifies the original implementation to add missing but useful fa-
cilities, to make it conform to the C standard and to enhance its readibility; for example
a prefix is used more strictly in order to avoid the user namespace pollution.

Since the book explains its design and implementation in a very comprehensive way,
not to mention the copyright issues, it is nothing but waste to repeat it here, so I finish
this document by giving introduction to the library, including explanation on its two
versions, one for production code and the other for debugging code. How to use the
facilities is deeply explained in files that define them.

The Memory Management Library reserves identifiers starting with mem_ and MEM_,
and imports the Assertion Library and the Exception Handling Library.

2 C Basic Library: Memory Management Library

1.2 How to Use The Library

The Memory Management Library is intended to substitute calls to the memory allo-
cation/deallcation functions like malloc() provided by <stdlib.h>. Its main purpose is
to enhance their safety by making them:

* never return a null pointer in any case, which eliminates handling an exceptional
case after memory allocation; failing allocation results in raising an exception
(that can be handled by the Exception Handling Library) rather than in returning
a null pointer, and

* set a freed pointer to null, which helps preventing the pointer from being used
further.

The following example shows a typical case to allocate/deallocate the storage for a type
that a pointer p points to:

type_t «p;
MEM_NEW (p) ;

MEM_FREE (p) ;

The user code does not need to check the returned value from MEM_NEW(), because
if the allocation fails, in which case the standard’s malloc() returns the null pointer, an
exception named mem_exceptfail raised. If you want to do something when the
memory allocation fails, simply establish its handler in a proper place as follows.

EXCEPT_TRY

. code containing call to allocation functions ...
EXCEPT_EXCEPT (mem_exceptfail)

. code handling allocation failure ...
EXCEPT_END

MEM_NEWO() is also provided to do the same job as MEM_NEW() except that the
allocated storage is initialized to zero-valued bytes.

MEM_FREE() requires that a given pointer be an lvalue, and assigns a null pointer to
it after deallocation. This means that a user should use a temporary object when having
only a pointer value as opposed to an object containing the value, but its benefit that the
freed pointer is prevented from being misused seems overwhelming the inconvenience.

MEM_RESIZE() that is intended to be a wrapper for realloc() differs from realloc() in
that its job is limited to adjusting the size of an allocated area; realloc() allocates as
malloc() when a given pointer is a null pointer, and deallocates as free() when a given
size is 0. Thus, a pointer given to MEM_RESIZE() has to be non-null and a size greater
than 0. The justification for the limitation is given in the book from which this library
comes.

MEM_ALLOC() and MEM_CALLOC() are simple wrappers for malloc() and calloc(),
and their major difference from the original functions is, of course, that allocation
failure results in raising an exception.

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

1.2 How to Use The Library 3

1.2.1 Two Versions

This library is provided as two versions, one for production code (memory.c) and the
other for debugging code (memoryd.c). Two versions offers exactly the same interfaces
and only their implementations differ. During debugging code, linking the debugging
version is helpful when you want to figure out if there are invalid memory usages like a
free-free problem (that is, trying to release an already-deallocated area) and a memory
leakage. This does not cover the whole range of such problems as valgrind does, but
if there are no other tools available for catching memory problems, the debugging
version of this library would be useful. Unfortunately, the debugging version is not
able to keep track of memory usage unless done through this library; for example, an
invalid operation applied to the storage allocated via malloc() goes undetected.

1.2.2 Debugging Version

As explained, the debugging version catches certain invalid memory usage. The full
list includes:

* freeing an unallocated area
e resizing an unallocated area and

* listing allocated areas at a given time.

The function implemented in the debugging version print out no diagnostics unless
mem_log() is invoked properly. You can get the list of allocated areas by calling mem_-
leak() after properly invoking mem_log().

The diagnostic message printed when an assertion failed changed in C99 to include
the name of the function in which it failed. This can be readily attained with a newly
introduced predefined identifier __func__. To provide more useful information, if an
implementation claims to support C99 by defining the macro __STDC_VERSION_-
_ properly, the library also includes the function name when making up the message
output when an uncaught exception detected.

1.2.3 Product Version

Even if the product version does not track the memory problems that the debugging
version does, mem_log() and mem_leak() are provided as dummy functions for conve-
nience. See the functions for more details.

1.2.4 Some Caveats

In the implementation of the debugging version, MEM_MAXALIGN plays an important
role; it is intended to specify the alignment factor of pointers malloc() returns; without
that, a valid memory operation might be mistaken as an invalid one and stop a running
program issuing a wrong diagnostic message. If MEM_MAXALIGN not defined, the
library tries to guess a proper value, but it is not guaranteed for the guess to be always

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

4 C Basic Library: Memory Management Library

correct. Thus, when compiling the library, giving an explicit definition of MEM_—
MAXALIGN (via a compiler option like -D, if available) is recommended.

MEM_ALLOC() and MEM_CALLOC() have the same interfaces as malloc() and cal-
loc() respectively, and thus their return values should be stored. On the other hand,
MEM_NEW() and MEM_RESIZE(), even if they act as if returning a pointer value,
modify a given pointer as the result. This means that a user codes like:

type_t =*p;
p = MEM_NEW (p);

might unconsciously trigger undefined behavior since between two sequence points p
is modified twice. So remember that any MEM_ functions taking a pointer (including
MEM_FREE()) modify the pointer and a user code need not to store explicitly the
result to the pointer.

1.3 Boilerplate Code

No boilerplate code is provided for this library.

1.4 Future Directions

1.4.1 Minor Changes

To mimic the behavior of calloc() specified by the standard, it is required for the debug-
ging version of MEM_CALLOC() to successfully return a null pointer when it cannot
allocate the storage of the requested size. Since this does not allow overflow, it has to
carefully check overflow when calculating the total size.

1.5 Contact Me

Visithttp://project.woong.org to get the lastest version of this library. Only
a small portion of my homepage (http://www.woong.orq) is maintained in En-
glish, thus one who is not good at Korean would have difficulty when navigating most
of other pages served in Korean. If you think the information you are looking for is on
pages written in Korean you cannot read, do not hesitate to send me an email asking
for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and then I will reply as soon as possible.

1.6 Copyright

I do not wholly hold the copyright of this library; it is mostly held by David Hanson as
stated in his book, "C: Interfaces and Implementations:"

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

http://project.woong.org
http://www.woong.org

1.6 Copyright 5

Copyright (c) 1994,1995,1996,1997 by David R. Hanson.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

For the parts I added or modified, the following applies:
Copyright (C) 2009-2011 by Jun Woong.

This package is a memory management implementation by Jun Woong. The implemen-
tation was written so as to conform with the Standard C published by ISO 9899:1990
and ISO 9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

C Basic Library: Memory Management Library

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

Chapter 2

Todo List

8 Todo List

Global mem_calloc Improvements are possible and planned:

¢ the C standard requires calloc() return a null pointer if it can allocates no
storage of the size ¢ * n in bytes, which allows no overflow in computing
the multiplication. So overflow checking is necessary to mimic the behav-
ior of calloc().

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

mem_loginfo_t (Information about invalid memory operations)

10

Data Structure Index

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

memory.c (Source for Memory Management Library - Production Version
(CBL)) . . oo 17

memory.h (Documentation for Memory Management Library (CBL)) 22

memoryd.c (Source for Memory Management Library - Debugging Version
(CBL)) . o o 31

12

File Index

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

Chapter 5

Data Structure Documentation

5.1 mem_loginfo_t Struct Reference

contains the information about invalid memory operations.

#include <memory.h>

Data Fields

* const void * p

* size_t size

e const char x ifile

e const char * ifunc
e int iline

e const char * afile
e const char x afunc
e int aline

* gsize t asize

5.1.1 Detailed Description

contains the information about invalid memory operations.

An object of the type mem_1oginfo_t is used when the information about an invalid
memory operation is delivered to a user-provided log function. As explained in mem_-
log(), such a function must be declared to accept a mem_loginfo_t arguments.

Its members contains three kinds of information:

¢ the information about an invalid memory operation. For example, if mem_free()
is invoked for the storage that is already deallocated, the pointer given to mem_-
free() is passed through p. In the case of mem_resize(), the requested size is also
available in size.

14 Data Structure Documentation

* the information to locate an invalid memory operation. The file name, function
name and line number where a problem occurred are provided through ifile,
ifunc and i1line, respectively.

* the information about the memory block for which an invalid memory operation
is invoked. For example, the "free-free" case where trying to deallocate already
deallocated storage means that the pointer value delivered to mem_free() was
allocated before. afile, afunc, aline and asize provide where it was
allocated and what its size was. This information is useful in tracking how such
an invalid operation is invoked.

If any of them is not available, they are set to a null pointer (for ifile, ifunc,
afileand afunc)or 0 (for size, iline, aline and asize).

Warning:

Logging invalid memory operations is activated by mem_log() which is available
only when the debugging version (not the production version) is used.

5.1.2 Field Documentation
5.1.2.1 const charx mem_loginfo_t::afile

file name in which storage in problem originally allocated

5.1.2.2 const char+x mem_loginfo_t::afunc

function name in which storage in problem originally allocated

5.1.2.3 int mem_loginfo_t::aline

line number on which storage in problem originally allocated

5.1.2.4 size_t mem_loginfo_t::asize

size of storage in problem when allocated before

5.1.2.5 const char+ mem_loginfo_t::ifile

file name in which invalid memory operation invoked

5.1.2.6 const charx mem_loginfo_t::ifunc

function name in which invalid memory operation invoked

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

5.1 mem_loginfo_t Struct Reference 15

5.1.2.7 int mem_loginfo_t::iline

line number on which invalid memory operation invoked

5.1.2.8 const voidx mem_loginfo_t::p

pointer value used in invalid memory operation

5.1.2.9 size_t mem_loginfo_t::size

requested size; meaningful only when triggered by mem_resize()

The documentation for this struct was generated from the following file:

* memory.h

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

16

Data Structure Documentation

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

Chapter 6

File Documentation

6.1 memory.c File Reference

Source for Memory Management Library - Production Version (CBL).
#include <stddef.h>

#include <stdlib.h>

#include "cbl/assert.h"

#include "cbl/except.h"

#include "memory.h"

Include dependency graph for memory.c:

Functions

¢ void *() mem_alloc (size_t n, const char xfile, int line)

allocates storage of the size n in bytes.

¢ void *() mem_calloc (size_t c, size_t n, const char xfile, int line)

allocates zero-filled storage of the size c * n in bytes.

* void() mem_free (void *p, const char xfile, int line)

deallocates storage pointed to by p.

18 File Documentation

¢ void *() mem_resize (void *p, size_t n, const char xfile, int line)

adjust the size of storage pointed to by p to n.

* void() mem_log (FILE xfp, void freefunc(FILE x*, const mem_loginfo_t *), void
resizefunc(FILE #, const mem_loginfo_t %))
* void() mem_leak (void apply(const mem_loginfo_t *, void x), void *cl)

Variables

* const except_t mem_exceptfail = { "Allocation failed" }

exception for memory allocation failure.

6.1.1 Detailed Description

Source for Memory Management Library - Production Version (CBL).

6.1.2 Function Documentation
6.1.2.1 voidx() mem_alloc (size_t n, const char x file, int line)

allocates storage of the size n in bytes.

mem_alloc() does the same job as malloc() except:

» mem_alloc() raises an exception when fails the requested allocation;

e mem_alloc() does not take O as the byte length to preclude the possibility of
returning a null pointer;

* mem_alloc() never returns a null pointer.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: none

Parameters:

< n size in bytes for storage to be allocated
«— file file name in which storage requested
« func function name in which strage requested (if C99 supported)

« line line number on which storage requested

Returns:

pointer to allocated storage

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

6.1 memory.c File Reference 19

Warning:

mam_alloc() returns no null pointer in any case. Allocation failure triggers an
exception, so no need to handle an exceptional case with the return value.

Here is the caller graph for this function:

6.1.2.2 void«() mem_calloc (size_t ¢, size_t n, const char « file, int line)

allocates zero-filled storage of the size ¢ * n in bytes.

mem_calloc() does the same job as mem_alloc() except that the storage it allocates are
zero- filled. The similar explanation as for mem_alloc() applies to mem_calloc() too;
see mem_alloc() for details.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: none

Parameters:

<« ¢ number of items to be allocated

«— n size in bytes for one item

«— file file name in which storage requested

«— func function name in which strage requested (if C99 supported)

« line line number on which storage requested

Returns:

pointer to allocated (zero-filled) storage

6.1.2.3 void() mem_free (void * p, const char x file, int line)

deallocates storage pointed to by p.
mem_free() is a simple wrapper function for free().

The additional parameters, £ile, func (if C99 supported), 1ine are for the consis-
tent form in the calling sites; the debugging version of this library takes advantage of
them to raise an exception when something goes wrong in mem_free(). When using
the debugging version, some of the following unchecked errors are to be detected.

Possible exceptions: none

Unchecked errors: foreign value given for p

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

20 File Documentation

Warning:

A "foreign" value also includes a pointer value which points to storage already
moved to a different address by, say, mem_resize().

Parameters:

«— p pointer to storage to release
« file file name in which deallocation requested
« func function name in which deallocation requested (if C99 supported)

« line line number on which deallocation requested

Returns:

nothing

Here is the caller graph for this function:

6.1.2.4 void«() mem_resize (void * p, size_t n, const char « file, int line)

adjust the size of storage pointed to by p to n.

mem_resize() does the main job of realloc(); adjusting the size of storage already al-
located by mem_alloc() or mem_calloc(). While realloc() deallocates like free() when
the given size is 0 and allocates like malloc() when the given pointer is a null pointer,
mem_resize() accepts neither a null pointer nor zero as its arguments. The similar
explanation as for mem_alloc() also applies to mem_resize(). See mem_alloc() for
details.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign value given for p

Parameters:
< p pointer to storage whose size to be adjusted
< n new size for storage
« file file name in which adjustment requested
«— func function name in which adjustment requested (if C99 supported)

«— line line number on which adjustment requested

Returns:

pointer to size-adjusted storage

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

6.1 memory.c File Reference

21

Here is the caller graph for this function:

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

22 File Documentation

6.2 memory.h File Reference

Documentation for Memory Management Library (CBL).
#include <stddef.h>

#include <stdio.h>

#include "cbl/except.h"

Include dependency graph for memory.h:

This graph shows which files directly or indirectly include this file:

Data Structures

* struct mem_loginfo_t

contains the information about invalid memory operations.

Defines

« #define MEM_ALLOC(n) (mem_alloc((n), _ FILE__, _LINE_))

allocates storage of the size n in bytes.

#define MEM_CALLOC(c, n) (mem_calloc((c), (n), _ FILE_ , _ LINE_))

allocation zero-filled storage of the size c * n in bytes.

#define MEM_NEW (p) ((p) = MEM_ALLOC(sizeof (p)))

allocates to p storage whose size is determined by the size of the pointed-to type by p.

#define MEM_NEWO(p) ((p) = MEM_CALLOC(1, sizeof +(p)))

allocates to p zero-filled storage whose size is determined by the size of the pointed-to
type by p.

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

6.2 memory.h File Reference 23

e #define MEM_FREE(p) ((void)(mem_free((p), __FILE_, _ LINE_),
(p)=0))
deallocates storage pointed to by p and set it to a null pointer.
e #define MEM_RESIZE(p, n) ((p) = mem_resize((p), (n), _ FILE_ , _ LINE_-
)
adjusts the size of storage pointed to by p to n bytes.
Functions

memory allocating functions:

¢ void * mem_alloc (size_t, const char *, int)
allocates storage of the size n in bytes.

¢ void * mem_calloc (size_t, size_t, const char *, int)
allocates zero-filled storage of the size c * n in bytes.

memory deallocating functions:

¢ void mem_free (void *, const char *, int)
deallocates storage pointed to by p.

memory resizing functions:

¢ void * mem_resize (void *, size_t, const char *, int)
adjust the size of storage pointed to by p to n.

memory debugging functions:
* void mem_log (FILE %, void(FILE *, const mem_loginfo_t *), void(FILE x,
const mem_loginfo_t %))
* void mem_leak (void(const mem_loginfo_t *, void %), void)

Variables

* const except_t mem_exceptfail

exception for memory allocation failure.

6.2.1 Detailed Description

Documentation for Memory Management Library (CBL).

Header for Memory Management Library (CBL).

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

24 File Documentation

6.2.2 Define Documentation

6.2.2.1 #define MEM_FREE(p) ((void)(mem_free((p), _ FILE_ , LINE_),
(p)=0))
deallocates storage pointed to by p and set it to a null pointer.

See mem_free() for details.

Warning:

p must be a modifiable lvalue; a rvalue expression or non-modifiable lvalue like
one qualified by const is not allowed. Also, MEM_FREE() evaluates its ar-
gument twice, so an argument containing side effects results in an unpredictable
result.

Possible exceptions: none

Unchecked errors: foreign value given for p

6.2.2.2 #define MEM_NEW(p) ((p) = MEM_ALLOC(sizeof x(p)))

allocates to p storage whose size is determined by the size of the pointed-to type by p.

A common way to allocate storage to a pointer p is as follows:

type *p;
p = malloc(sizeof (type));

However, this is error-prone; it might cause the memory corrupted if one forget to
change every instance of t ype when the type of p changes to, say, another_type.
To preclude problems like this a proposed way to allocate storage for a pointer p is:

p = malloc (sizeof (*p));

In this code, changing the type of p is automatically reflected to the allocation code
above. Note that the expression given in the sizeof expression is not evaluated, so
the validity of p’ s value does not matter here.

The macro MEM_NEW() is provided to facilitate such usage. It takes a pointer as
an argument and allocates to it storage whose size is the size of the referrenced type.
Therefore it makes an invalid call to invoke MEM_NEW() with a pointer to an imcon-
plete type like a pointer to void and a pointer to a structure whose type definition is
not visible.

Note that the sizeof operator does not evaluate its operand, which makes MEM_ -
NEW)() evaluate its argument exactly once as an actual function does. Embedding a
side effect in the argument, however, is discouraged.

Possible exceptions: mem_exceptfail

Unchecked errors: none

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

6.2 memory.h File Reference 25

6.2.2.3 #define MEM_NEWO0(p) ((p) = MEM_CALLOC(1, sizeof x(p)))
allocates to p zero-filled storage whose size is determined by the size of the pointed-to
type by p.

The same explanation for MEM_NEW() applies. See MEM_NEW() for details.
Possible exceptions: mem_exceptfail

Unchecked errors: none

6.2.2.4 #define MEM_RESIZE(p, n) ((p) = mem_resize((p), (n), _ FILE__,
__LINE_))

adjusts the size of storage pointed to by p to n bytes.
See mem_resize() for details.
Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign value given for p

Warning:

MEM_RESIZE() evaluates its argument twice. An argument containing side ef-
fects results in an unpredictable result.

6.2.3 Function Documentation
6.2.3.1 void+ mem_alloc (size_t n, const char x file, int line)

allocates storage of the size n in bytes.

mem_alloc() does the same job as malloc() except:

* mem_alloc() raises an exception when fails the requested allocation;

* mem_alloc() does not take O as the byte length to preclude the possibility of
returning a null pointer;

* mem_alloc() never returns a null pointer.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: none

Parameters:

< n size in bytes for storage to be allocated
«— file file name in which storage requested
«— func function name in which strage requested (if C99 supported)

«— line line number on which storage requested

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

26 File Documentation

Returns:

pointer to allocated storage

Warning:

mam_alloc() returns no null pointer in any case. Allocation failure triggers an
exception, so no need to handle an exceptional case with the return value.

allocates storage of the size n in bytes.

Some general explanation on mem_alloc() can be found on the production version of
the library.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: none

Parameters:

«—n size of memory block requested
« file file name in which allocation requested
« func function name in which allocation requested (if C99 supported)

« line linu number on which allocation requested

Returns:

memory block requested

Here is the caller graph for this function:

6.2.3.2 void+ mem_calloc (size_t ¢, size_t n, const char x file, int line)

allocates zero-filled storage of the size c * n in bytes.

mem_calloc() does the same job as mem_alloc() except that the storage it allocates are
zero- filled. The similar explanation as for mem_alloc() applies to mem_calloc() too;
see mem_alloc() for details.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: none

Parameters:

«— ¢ number of items to be allocated

«— n size in bytes for one item

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

6.2 memory.h File Reference 27

« file file name in which storage requested
«— func function name in which strage requested (if C99 supported)

« line line number on which storage requested

Returns:

pointer to allocated (zero-filled) storage

allocates zero-filled storage of the size c * n in bytes.

mem_calloc() returns a zero-filled memory block whose size is at least n. mem_-
calloc() allocates a memory block by invoking mem_malloc() and set its every byte to
zero by memset(). The similar explanation as for mem_alloc() applies to mem_calloc()
too; see mem_alloc().

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

«— ¢ number of items to be allocated

< n size in bytes for one item

« file file name in which allocation requested

«— func function name in which allocation requested (if C99 supported)

«— line line number on which allocation requested

Returns:

pointer to allocated (zero-filled) memory block

Todo

Improvements are possible and planned:

* the C standard requires calloc() return a null pointer if it can allocates no
storage of the size c * n in bytes, which allows no overflow in computing the
multiplication. So overflow checking is necessary to mimic the behavior of
calloc().

Here is the call graph for this function:

6.2.3.3 void mem_free (void * p, const char x file, int line)

deallocates storage pointed to by p.

mem_free() is a simple wrapper function for free().

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

28 File Documentation

The additional parameters, £ile, func (if C99 supported), 1ine are for the consis-
tent form in the calling sites; the debugging version of this library takes advantage of
them to raise an exception when something goes wrong in mem_free(). When using
the debugging version, some of the following unchecked errors are to be detected.

Possible exceptions: none

Unchecked errors: foreign value given for p

Warning:

A "foreign" value also includes a pointer value which points to storage already
moved to a different address by, say, mem_resize().

Parameters:
«— p pointer to storage to release
« file file name in which deallocation requested
«— func function name in which deallocation requested (if C99 supported)

«— line line number on which deallocation requested

Returns:

nothing

deallocates storage pointed to by p.
mem_free() releases a given memory block.
Possible exceptions: assert_exceptfail

Unchecked errors: none

Parameters:
«— p pointer to memory block to release (to mark as "freed")
« file file name in which deallocation requested
« func function name in which deallocation requested (if C99 supported)

«— line line number on which deallocation is requested

Returns:

nothing

Here is the call graph for this function:

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

6.2 memory.h File Reference 29

Here is the caller graph for this function:

6.2.3.4 void+x mem_resize (void * p, size_t n, const char x file, int line)

adjust the size of storage pointed to by p to n.

mem_resize() does the main job of realloc(); adjusting the size of storage already al-
located by mem_alloc() or mem_calloc(). While realloc() deallocates like free() when
the given size is 0 and allocates like malloc() when the given pointer is a null pointer,
mem_resize() accepts neither a null pointer nor zero as its arguments. The similar
explanation as for mem_alloc() also applies to mem_resize(). See mem_alloc() for
details.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: foreign value given for p

Parameters:
«— p pointer to storage whose size to be adjusted
< n new size for storage
«— file file name in which adjustment requested
«— func function name in which adjustment requested (if C99 supported)

«— line line number on which adjustment requested

Returns:

pointer to size-adjusted storage

adjust the size of storage pointed to by p to n.

mem_resize() does the main job of realloc(); adjusting the size of the memory block
already allocated by mem_alloc() or mem_calloc(). While realloc() deallocates like
free() when the given size is 0 and allocates like malloc() when the given pointer is a
null pointer, mem_resize() accepts neither a null pointer nor zero as its arguments. The
similar explanation as for mem_alloc() also applies to mem_resize(). See mem_alloc()
for details.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: none

Parameters:

«— p pointer to memory block whose size to be adjusted

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

30 File Documentation

<« n new size for memory block
«— file file name in which adjustment requested
«— func function name in which adjustment requested (if C99 supported)

« line line number on which adjustment requested

Returns:

pointer to size-adjusted memory block

Here is the call graph for this function:

Here is the caller graph for this function:

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

6.3 memoryd.c File Reference

6.3 memoryd.c File Reference

Source for Memory Management Library - Debugging Version (CBL).
#include <stddef.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include "cbl/assert.h"

#include "cbl/except.h"

#include "memory.h"

Include dependency graph for memoryd.c:

Data Structures

* union align

* struct descriptor

Defines

¢ #define NELEMENT (array) (sizeof(array) / sizeof(x(array)))
#define HASH(p, t) (((uintptr_t)(p)>>3) % NELEMENT(t))
#define NDESCRIPTORS 512

#define MULTIPLE(x, y) ()+(y)-D/(y)) * (¥))

#define NALLOC MULTIPLE(4096, sizeof(union align))
#define ALIGNED(p) ((uintptr_t)(p) % sizeof(union align) == 0)
#define RAISE_EXCEPT_IF_INVALID(p, n, type)

L]

Typedefs

¢ typedef unsigned long uintptr_t

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

32 File Documentation

Functions

* void() mem_free (void *p, const char xfile, int line)

deallocates a memory block.

¢ void *() mem_resize (void *p, size_t n, const char xfile, int line)

adjusts the size of a memory block pointed to by p to n.

 void *() mem_calloc (size_t c, size_t n, const char xfile, int line)

allocates a zero-filled memory block of the size c = n in bytes.

¢ void *() mem_alloc (size_t n, const char xfile, int line)

allocates a new memory block of the size n in bytes.

* void() mem_log (FILE «fp, void freefunc(FILE *, const mem_loginfo_t *), void
resizefunc(FILE #, const mem_loginfo_t %))

starts to log invalid memory usage.

* void() mem_leak (void apply(const mem_loginfo_t *, void %), void cl)

calls a user-provided function for each memory block in use.

Variables

* const except_t mem_exceptfail = { "Allocation failed" }

exception for memory allocation failure.

* void(x logfuncFreefree)(FILE x*, const mem_loginfo_t)
¢ void(x logfuncResizefree)(FILE *, const mem_loginfo_t)

6.3.1 Detailed Description

Source for Memory Management Library - Debugging Version (CBL).

6.3.2 Define Documentation

6.3.2.1 #define RAISE_EXCEPT_IF_INVALID(p, n, type)

Value:
do { \
if (!'ALIGNED(p) || (bp=descfind(p)) == NULL || bp->free)
if (logfile)
logprint ((p), (n), bp, file, line, (int (x) ()) (type));
else

except_raise (&assert_exceptfail, file, line);
}
} while (0)

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

P

6.3 memoryd.c File Reference 33

6.3.3 Function Documentation
6.3.3.1 void«() mem_alloc (size_t n, const char x file, int line)

allocates a new memory block of the size n in bytes.
allocates storage of the size n in bytes.

Some general explanation on mem_alloc() can be found on the production version of
the library.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: none

Parameters:

«— n size of memory block requested
«— file file name in which allocation requested
« func function name in which allocation requested (if C99 supported)

« line linu number on which allocation requested

Returns:

memory block requested

6.3.3.2 void«() mem_calloc (size_t c, size_t n, const char x file, int line)

allocates a zero-filled memory block of the size ¢ * n in bytes.
allocates zero-filled storage of the size ¢ * n in bytes.

mem_calloc() returns a zero-filled memory block whose size is at least n. mem_-
calloc() allocates a memory block by invoking mem_malloc() and set its every byte to
zero by memset(). The similar explanation as for mem_alloc() applies to mem_calloc()
too; see mem_alloc().

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:
< ¢ number of items to be allocated
«— n size in bytes for one item
«— file file name in which allocation requested
« func function name in which allocation requested (if C99 supported)

« line line number on which allocation requested

Returns:

pointer to allocated (zero-filled) memory block

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

34 File Documentation

Todo

Improvements are possible and planned:

* the C standard requires calloc() return a null pointer if it can allocates no
storage of the size ¢ * n in bytes, which allows no overflow in computing the
multiplication. So overflow checking is necessary to mimic the behavior of
calloc().

Here is the call graph for this function:

6.3.3.3 void() mem_free (void * p, const char x file, int line)

deallocates a memory block.

deallocates storage pointed to by p.
mem_free() releases a given memory block.
Possible exceptions: assert_exceptfail

Unchecked errors: none

Parameters:

« p pointer to memory block to release (to mark as "freed")
« file file name in which deallocation requested
« func function name in which deallocation requested (if C99 supported)

«— line line number on which deallocation is requested

Returns:

nothing

Here is the call graph for this function:

6.3.3.4 void() mem_leak (void applyconst mem_loginfo_t *, void *, void * cl)

calls a user-provided function for each memory block in use.

mem_leak() is useful when detecting memory leakage. Before terminating a program,
calling it with a callback function which are passed to apply makes the callback func-
tion called with the information of every memory block still in use (or not deallocated).

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

6.3 memoryd.c File Reference 35

Among the member of mem_loginfo_t,p, size,afile, afunc and aline are
filled; if some of them are unavailable, they are set to a null pointer for pointer mem-
bers or 0 for integer members. An information that a user needs to give to a callback
function can be passed through c1. The following shows an example of a callback
function:

void inuse (const mem_loginfo_t xloginfo, wvoid =cl)
{

FILE xlogfile = cl;

const char xfile, func;

file = (loginfo->afile)? loginfo->afile: "unknown file";
func = (loginfo->afunc)? loginfo->afunc: "unknown function";
fprintf (logfile, "% memory in use at %p\n", loginfo->p);

fprintf (logfile, "this block is %1d bytes long and was allocated from %s(
(unsigned long)loginfo->size, func, file, loginfo->aline);

fflush(logfile);

If this callback function is invoked by calling mem_leak() as follows:

mem_leak (inuse, stderr);

it prints out a list of memory blocks still in use to stderr as follows:

** memory in use at Oxfff7
this block is 2048 bytes long and was allocated from table_init () table.c:235

If a null pointer is given to apply, the pre-defined internal callback function is invoked
to print the information for memory leak to a file given through c1 (after converted to
a pointer to FILE). If c1 is also a null pointer, a file possibly set by mem_log() is in-
spected to see if it is available, before the information printed finally goes to stderr.

Possible exceptions: none
Unchecked errors: invalid function pointer given for apply, invalid file pointer given
for c1 when apply is given a null pointer
Parameters:
«— apply user-provided function to be called for each memory block in use
«— ¢l passing-by argument to apply
Returns:

nothing

6.3.3.5 void() mem_log (FILE x fp, void freefuncFILE x, const mem_loginfo_t
*, void resizefuncFILE x, const mem_loginfo_t x)

starts to log invalid memory usage.

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

%$s:%d\n",

36 File Documentation

mem_log() starts to log invalid memory usage; deallocating an already released mem-
ory called "free-free" or "double free" and resizing a non-allocated memory called
"resize-free" here. mem_log() provides two ways to log them. A user can register
his/her own log function for the free-free or resize-free case by providing a function
to freefunc or resizefunc. The necessary information is provided to the regis-
tered function via a mem_loginfo_t object. A user-provided log function must be
defined as follows:

void user_freefree (FILE xfp, const mem_loginfo_t xinfo)

{

}

See the explanation of mem_loginfo_t for the information provided to a user-
registered function. The file pointer given to mem_log()’s fp is passed to the first
parameter of an user-registered log function.

If freefunc or resizefunc are given a null pointer, the default log messages are
printed to the file specified by fp. The message looks like:

*x freeing free memory
mem_free (0x6418) called from table_mgr() table.c:461

this block is 48 bytes long and was allocated table_init () table.c:

*% resizing unallocated memory
mem_resize (Oxf7ff, 640) called from table_mgr () table.c:468

this block is 32 bytes long and was allocated table_init () table.c:

Invoking mem_log() with a null pointer for £p stops logging.

Possible exceptions: none

Unchecked errors: invalid file pointer given for fp, invalid function pointer given for
freefuncor resizefunc

Parameters:

« fp file to which log message printed out

« freefunc user-provided function to log free-free case; default message used
when null pointer given

«— resizefunc user-provided function to log resize-free case; default message used
when null pointer given

Returns:

nothing

6.3.3.6 void«() mem_resize (void * p, size_t n, const char x file, int line)

adjusts the size of a memory block pointed to by p to n.

adjust the size of storage pointed to by p to n.

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

233

230

6.3 memoryd.c File Reference 37

mem_resize() does the main job of realloc(); adjusting the size of the memory block
already allocated by mem_alloc() or mem_calloc(). While realloc() deallocates like
free() when the given size is 0 and allocates like malloc() when the given pointer is a
null pointer, mem_resize() accepts neither a null pointer nor zero as its arguments. The
similar explanation as for mem_alloc() also applies to mem_resize(). See mem_alloc()
for details.

Possible exceptions: mem_exceptfail, assert_exceptfail

Unchecked errors: none

Parameters:

«— p pointer to memory block whose size to be adjusted

«— n new size for memory block

« file file name in which adjustment requested

«— func function name in which adjustment requested (if C99 supported)

« line line number on which adjustment requested

Returns:

pointer to size-adjusted memory block

Here is the call graph for this function:

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

Index

afile iline, 14
mem_loginfo_t, 14 p, 15
afunc size, 15
mem_loginfo_t, 14 MEM_NEW
aline memory.h, 24
mem_loginfo_t, 14 MEM_NEWO0
asize memory.h, 24
mem_loginfo_t, 14 MEM_RESIZE
memory.h, 25
ifile mem_resize
mem_loginfo_t, 14 memory.c, 20
ifunc memory.h, 29
mem_loginfo_t, 14 memoryd.c, 36
iline memory.c, 17
mem_loginfo_t, 14 mem_alloc, 18
mem_calloc, 19
mem_alloc mem_free, 19
memory.c, 18 mem_resize, 20
memory.h, 25 memory.h, 22
memoryd.c, 33 mem_alloc, 25
mem_calloc mem_calloc, 26
memory.c, 19 MEM_FREE, 24
memory.h, 26 mem_free, 27
memoryd.c, 33 MEM_NEW, 24
MEM_FREE MEM_NEWO, 24
memory.h, 24 MEM_RESIZE, 25
mem_free mem_resize, 29
memory.c, 19 memoryd.c, 31
memory.h, 27 mem_alloc, 33
memoryd.c, 34 mem_calloc, 33
mem_leak mem_free, 34
memoryd.c, 34 mem_leak, 34
mem_log mem_log, 35
memoryd.c, 35 mem_resize, 36
mem_loginfo_t, 13 RAISE_EXCEPT_IF_INVALID, 32
afile, 14
afunc, 14
aline, 14 mem_loginfo_t, 15
asize, 14
ifile, 14 RAISE_EXCEPT_IF_INVALID
ifunc, 14 memoryd.c, 32

INDEX

39

size
mem_loginfo_t, 15

Generated on Mon Jan 24 01:12:37 2011 for The Memory Management Library by Doxygen

	C Basic Library: Memory Management Library
	Introduction
	How to Use The Library
	Two Versions
	Debugging Version
	Product Version
	Some Caveats

	Boilerplate Code
	Future Directions
	Minor Changes

	Contact Me
	Copyright

	Todo List
	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	mem_loginfo_t Struct Reference
	Detailed Description
	Field Documentation
	afile
	afunc
	aline
	asize
	ifile
	ifunc
	iline
	p
	size

	File Documentation
	memory.c File Reference
	Detailed Description
	Function Documentation
	mem_alloc
	mem_calloc
	mem_free
	mem_resize

	memory.h File Reference
	Detailed Description
	Define Documentation
	MEM_FREE
	MEM_NEW
	MEM_NEW0
	MEM_RESIZE

	Function Documentation
	mem_alloc
	mem_calloc
	mem_free
	mem_resize

	memoryd.c File Reference
	Detailed Description
	Define Documentation
	RAISE_EXCEPT_IF_INVALID

	Function Documentation
	mem_alloc
	mem_calloc
	mem_free
	mem_leak
	mem_log
	mem_resize

