The Configuration File Library
0.2.0

Generated by Doxygen 1.5.8

Mon Jan 24 01:13:09 2011

Contents

1 C Environment Library: Configuration File Library 1
I.1 Introduction 1
I.I.1 Concepts 1

1.2 HowtoUseTheLibrary 2
1.2.1 Configuration Description Tables 3

1.2.2 ConfigurationFiles 3

1.3 Boilerplate Code 5

1.4 Future Directions 7
1.4.1 Recoverable Errors 7

1.42 Minor Changes 7

1.5 ContactMe 7

1.6 Copyright 7

2 Todo List 9
3 Data Structure Index 11
3.1 DataStructureso e 11

4 File Index 13
4.1 FileList 13

5 Data Structure Documentation 15
5.1 conf tStructReference 15
5.1.1 Detailed Description 15

5.1.2 Field Documentation 16

5121 defval 16

5122 type ..o 16

ii CONTENTS
5023 var ..o 16

6 File Documentation 17
6.1 confcFileReference 17
6.1.1 Detailed Description 19

6.1.2 Function Documentation 19
6.1.2.1 confconv, 19

6.1.22 conferrcode 20

6.1.23 conferrstr 21

6.1.24 conffree., 21

6.1.25 conf_get 21

6.1.2.6 conf_getbool 22

6.1.2.7 conf_getint. 23

6.1.2.8 conf getreal, . 23

6.1.29 conf_getstr, 24

6.1.2.10 conf_getuint 25

6.1.2.11 conf hashreset 25

6.1.2.12 confinit 26

6.1.2.13 conf_preset 26

6.1.2.14 conf section, 27

6.1.2.15 confset 28

6.2 confhFileReference 29
6.2.1 Detailed Description 31

6.2.2 Enumeration Type Documentation 31
6.22.1 "@O0 31

6222 "@1 ... 31

6223 "@2 31

6.2.3 Function Documentation 32
6.23.1 confconv, 32

6232 conferrcode. 33

6.23.3 conferrstr 33

6234 conffree. 34

6.23.5 conf get 34

6.2.3.6 conf_getbool 35

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

CONTENTS

ii

6.2.3.7
6.2.3.8
6.2.39
6.2.3.10
6.2.3.11
6.2.3.12
6.2.3.13
6.2.3.14
6.2.3.15

conf_getint. 36
conf getreal 36
conf_getstr 37
conf getuint 38
conf_hashreset 38
conf_inmit 39
conf_preset 39
conf_section 40
conf_set 41

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

Chapter 1

C Environment Library:
Configuration File Library

Version:

0.2.0

Author:

Jun Woong (woong.jun at gmail.com)

Date:
last modified on 2011-01-24

1.1 Introduction

This document specifies the Configuration File Library which belongs to the C En-
vironment Library. This library reads an "ini-style" configuration file and allows its
user to readily access to values set by the file. There is no de jure standard for
"ini" files, but this library supports most of what the Wikipedia page for the "ini" file
(http://en.wikipedia.org/wiki/INI_file) describes; sections (with no
support for nested ones), line concatenation by a backslash, escape sequences and so
on. Differently from other implementataions, this library supports a simple type sys-
tem. This aids its users to retrieve values set by a configuration file without manual
conversion to a desired type.

The Configuration File Library reserves identifiers starting with conf_ and CONF_,
and imports the Assertion Library (which requires the Exception Handling Library),
the Memory Management Library, the Hash Library and the Table Library.

1.1.1 Concepts

There are several concepts used to specify the Configuration File Library.

http://en.wikipedia.org/wiki/INI_file

2 C Environment Library: Configuration File Library

"Configuration varaibles" (called simply "variables" hereafter) are variables managed
by the library and set by a default setting, a configuration file or a program. Variables
have names and types.

A set of variable can be grouped and defined to belong to a "configuration section”
(called simply "section" hereafter). A section comprises a distinct namespace, thus
two variables with the same name designate two different variables if they belong to
different sections.

The "global section" is an unnamed section that always exists. How to designate the
global section and when variables belong to it are described below. The "current sec-
tion" is a section set by a user program so that variables with no section designation are
assumed to belong to it; conf_section() is used to set a section to the current one.

The supported "types" are boolean, signed/unsigned integer, real and string. The string
type is most general and the library provides facilities to convert that type to others.

A "congifuration description table" is an array that has a sequence of variable names
and their properties including a default value. The table also specifies a set of supported
sections and variables. If supplied, the library recognizes sections and variables only
appeared in the table. Otherwise, all sections and variables mentioned in a configura-
tion file are recognized.

1.2 How to Use The Library

The Configuration File Library reads an "ini-style" configuration file and set variables
according to its contents. The library behaves differently depending on whether a con-
figuration description table is given by conf_preset(). The table can be composed by
creating an array of conf_t and passed to the library through conf_preset(). If conf_-
preset() is not invoked, conf_init() has to be used to initiate the library and to read a
specified configuration file. If conf_init() is called after conf_preset(), the contents read
from a configuration file override what the table sets.

A configuration description table gives a list of sections and variables that the library
can recognize and any other section/variable names that appear in a configuration file
(but not in the table) are treated as an error.

If no configuration description table given, the library recognizes all possible sections
and variables during conf_init() reads a configuration file and since there is no way to
prescribe the type of each variable, all variables are assumed to have the string type.
Note that unless a configuration file is protected from a malicious user, the user can
exploit it to interfere the normal starting of a program; lots of sections and variables
require the library to consume lots of memory blocks and thus other parts of a program
might fail to perform its job due to lack of memory. It is essential, thus, to restrict
allowable section and variable names by letting conf_preset() provide a predefined set
of names if a configuration file can be exposed to such a user.

The storage used to maintain a program configuration itself is managed by the library.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

1.2 How to Use The Library 3

1.2.1 Configuration Description Tables

If ever invoked, conf_preset() has to be invoked before conf_init(). If a program need
not read a configuration file and uses only predefined settings given through conf -
preset(), it need not call conf_init() at all. A configuration description table is an array
of conf_t and enumerates section/variable names, their types and default values. For
more details including how to designate a section and variable in the table and what
each field of the table means, see conf_t.

1.2.2 Configuration Files

A configuration file basically has the form of a so-called "ini" file. The file is consisted
of variable-value pairs belonged to a certain section as follows:

[section_1]
varl = valuel
var2 = value2

A string between the square brackets specifies a section and variable-value pairs ap-
pear below are belonged to that section. Names for sections and variables have to be
consisted of only digits, alphabets and an underscore (_). By default, names are case-
insensitive (setting the CONF__OPT_CASE bit in the second argument to conf_preset()
and conf_init() changes this behavior). They cannot have an embedded space. Digits,
alphabets are here dependent on the locale where the library is used. If a program using
the library changes its locale to other than "C" locale, characters that are allowed for
section/variable names also change. Even if multibyte characters can appear in values,
section and variable names cannot have them.

If the pairs are given before any section has not been specified, they belong to the
"global" section. The global section also can be specified by an empty section name as
shown below:

[] # global section
varl = valuel

A section does not nest and variables belonging to a section need not be gethered.

var0 = valueO # belongs to the global section

[section_1]
varl = valuel # belongs to section_1

[section_2]
var2 = value2 # belongs to section_2

[section_1]

var3 = value3 # belongs to section_1, now section_1 has two variables

Two different sections have the same variable and they are distinct variables.

[section_1]

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

4 C Environment Library: Configuration File Library

varl = valuel # varl belonging to section_l1

[section_2]
varl = valuel # varl belonging to section_2

If a variable appears with the same name as one that appeared first under the same
section, the value is overwritten by the latter variable setting.

[section_1]
varl = valuel # varl has valuel
varl = value2 # var2 now has value2

Comments begin with a semicolon (;) or a number sign (#) and ends with a newline as
you have shown in examples above.

If the last character of a line is a backslash (\) without any trailing spaces, its following
line is spliced to the line by eliminating the backslash and following newline. Any
whitespaces preceding the backslash and any leading whitespaces in the following line
are replaced with a space.

[section_1]

varl = val\
ue # varl = value
var2 = value\
2 # var2 = value 2
var3 = value \
3 # var3 = value 3

Values following an equal sign (=) after variables can have two forms, quoted and
unquoted. Quoted values have to start with either a double-quote (") or single-quote
(’) and end with the matching character; that is, the whole value should be quoted. A
semicolon (;) or number sign (#) in a quoted value does not start a comment.

[section_1]

varl = "quoted value. ; or # starts no comment" # now this is comment

var2 = ’"quoted value again’
var3 = this is not a "quoted" value

The default behavior of the library recognizes no escape sequences, but if the CONF_ —
OPT_ESC bit is set in the second argument to conf_preset() and conf_init(), they are
recognized in a quoted value; an unquoted value supports no escape sequences. The
supported sequences are:

\’ \" \? AN\ \O
\a \b \f \n \r \t \v

with the same meanings as defined in C, and also include:
\; \# \=

that are replaced with a semicolon, number sign and equal sign respectively.

Any leading and trailing whitespaces are omitted from an unquoted value; thus only
way to keep those spaces is to quote the value. Other whitespaces are kept unchanged.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

1.3 Boilerplate Code 5

1.3 Boilerplate Code

As already explained, using the library starts with invoking conf_preset() or conf_init().
If you desire to provide a predefined set of sections and variables with default values,
call conf_preset() before calling conf_init() that reads a configuration file. It is de-
cided when calling conf_preset() or conf_init() (if conf_preset() has not been invoked)
whether names are case-sensitive and escape sequences are recognized in quoted val-
ues.

After reading a configuration file using conf_init(), a user program can freely in-
spects variables using conf_get(), conf_getbool(), conf_getint(), conf_getuint(), conf_-
getreal() and conf_getstr(). conf_get() retrieves the value of a given variable and inter-
prets it as having the declared type of the variable. Other functions are useful when a
variable from which a value is to be retrieved has the string type and a user code knows
how to interpret it; when a configuration description table is not used, all variables are
assumed to have the string type. If variables belonging to a specific section are fre-
quently referred to, conf_section() that changes the current section to a given section
helps.

If a function returns an error indicator, an immediate call to conf_errcode() returns the
information about the error and conf_errstr() gives a string describing a given error
code that is useful when constructing error or log messages for users.

This library works on top of the Memory Management Library and if any function that
performs memory allocation fails to get necessary memory, an exception is raised.

conf.c contains an example designed to use as many facilities of the library as possible
in a disabled part and a bolierplate code is given here:

#define CONFFILE "test.conf"

conf_t tab[] = {
"VarBool", CONF_TYPE_BOOL, "yes",
"VarInt", CONF_TYPE_INT, "255",
"VarUint", CONF_TYPE_UINT, "OxFFFF",
"VarReal", CONF_TYPE_REAL, "3.14159",
"VarStr", CONF_TYPE_STR, "Global VarStr Default",
"Sectionl.VarBool", CONF_TYPE_BOOL, "FALSE",
"Sectionl.VarStr", CONF_TYPE_STR, "Sectionl.VarStr Default",

"Section2.VarBool", CONF_TYPE_BOOL, "true",
"Section2.VarReal", CONF_TYPE_REAL, "314159%9e-5",
NULL,

}i

size_t line;

FILE *fp;
if (conf_preset (tab, CONF_OPT_CASE | CONF_OPT_ESC) != CONF_ERR_OK)
fprintf (stderr, "test: %$s\n", conf_errstr(conf_errcode()));

conf_free();
conf_hashreset ();
exit (EXIT_FAILURE);

fp = fopen (CONFFILE, "r");
if ('fp) {

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6 C Environment Library: Configuration File Library

fprintf (stderr, "test: failed to open %s for reading\n", CONFFILE);
conf_free();
conf_hashreset ();
exit (EXIT_FAILURE) ;
}

line = conf_init (fp, 0);
fclose (fp);

if (line != 0) {
fprintf (stderr, "test:%s:%1d: %s\n", CONFFILE, (unsigned long)line,
conf_errstr (conf_errcode()));

conf_free();
conf_hashreset () ;
exit (EXIT_FAILURE) ;

sets an internal data structure properly
according to what are read from configuration variables

conf_free();
conf_hashreset () ;

Even if this code defines the name of a configuration file as a macro, you may hard-code
it or make it determined from a program argument.

An array of the conf_t type, tab is a configuration description table. It defines five
variables in the global scope, each of which has the boolean, integer, unsigned integer,
real and string type, respectively. It defines two more sections named "Sectionl" and
"Section2", and four variables that belong to them. The last value in each row is a
default value for each variable being defined. A null pointer terminates defining the
table.

conf_preset() delivers the table to the library. If a problem occurs, conf_preset() returns
an error code (that is not CONF_ERR_OK), and you can inspect it further using conf_-
errcode() and conf_errstr(). Do not forget that this library is based on data structures
using the Memory Management Library that raises an exception if memory allocation
fails.

conf_init() takes a stream (a FILE pointer), not a file name. This is because taking a
stream allows its user to hand to conf_init() various kinds of files or file-like objects,
for example, a string connected to a stream which has no file name.

Once conf_init() has done its job, the stream for the configuration file is no longer
necessary, so fclose() closes it.

conf_init() returns O if nothing is wrong, or the line number (that is greater than 0) on
which a problem occurs otherwise. You can use the return value when issueing an error
message.

Note that if the hash table supported by the Hash Library is used for other purposes, it
may not be desired to call conf_hashreset(). See conf_free() and conf_hashreset() for
more details. If you feel uncomfortable with several instances of calls to conf_free()
and conf_hashreset(), you can introduce a label before clean-up code and jump to that
label whenever cleaning-up required.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

1.4 Future Directions 7

1.4 Future Directions

1.4.1 Recoverable Errors

The current implementation does not provide a way to recover from errors like en-
countering unrecognized sections or variables. Recovering from them is sometimes
necessary; for example, a programmer might want to issue a diagnostic message when
a user uses an old version of the configuration file format, or to construct a certain part
of the configuration file format dynamically depending on other parts of it.

1.4.2 Minor Changes

table_new() used by the Configuration File Library to create tables for storing con-
figuration data takes a hint for the expected size of the table to create. Even if the
performance is not a big issue in this library and granting a good hint improves the
performance of operations on tables, providing a reasonable one to table_new() is nec-
essary.

1.5 Contact Me

Visithttp://project.woong.org to get the lastest version of this library. Only
a small portion of my homepage (http://www.woong.org) is maintained in En-
glish, thus one who is not good at Korean would have difficulty when navigating most
of other pages served in Korean. If you think the information you are looking for is on
pages written in Korean you cannot read, do not hesitate to send me an email asking
for help.

Any comments about the library are welcomed. If you have a proposal or question on
the library just email me, and then I will reply as soon as possible.

1.6 Copyright

Copyright (C) 2009-2011 by Jun Woong.

This package is a configuration file reader implementation by Jun Woong. The im-
plementation was written so as to conform with the Standard C published by ISO
9899:1990 and ISO 9899:1999.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

http://project.woong.org
http://www.woong.org

8 C Environment Library: Configuration File Library

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

Chapter 2

Todo List

10 Todo List

Global conf _init Improvements are possible and planned:

* some adjustment on arguments to table_new() is necessary.

Global conf_preset Improvements are possible and planned:

* some adjustment on arguments to table_new() is necessary;

* considering changes to the format of a configuration file as a program to
accept it is upgraded, making it a recoverable error to encounter a non-
preset section or variable name would be useful; this enables an old version
of the program to accept a new configuration file with diagnostics.

Global conf_set Improvements are possible and planned:

* some adjustment on arguments to table_new() is necessary.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

conf_t (Element of a configuration description table)

12

Data Structure Index

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

Chapter 4

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

conf.c (Source for Configuration File Library (CEL))
conf.h (Header for Configuration File Library (CEL))

14

File Index

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

Chapter 5

Data Structure Documentation

5.1 conf _t Struct Reference

represents an element of a configuration description table.

#include <conf.h>

Data Fields

e char x var
* int type
e char x defval

5.1.1 Detailed Description

represents an element of a configuration description table.

conf_t represents an element of a configuration description table that is used for a
user program to specify a set of sections and variable including their types and default
values; a configuration table is the only way to specify types of variables as having
other than CONF_TYPE_ STR (string type).

The var member specifies a section/variable name. The string has one of the following
two forms:

variable
section . variable

where whitespaces are allowed before and/or after a section and variable name. The
first form refers to a variable in the global section; there is no concept of the "current”
section yet because conf_section() cannot be invoked before conf_preset() or conf_-
init(). To mark the end of a table, set the var member to a null pointer.

16 Data Structure Documentation

The type member specifies the type of a variable and should be one of CONF_ -
TYPE_BOOL (boolean value, int), CONF_TYPE_INT (signed integer, long), CONF_ -
TYPE_UINT (unsigned integer, unsigned long), CONF_TYPE_REAL (floating-point
number, double), and CONF_TYPE_ STR (string, char *). Once a variable is set to have
a type, there is no way to change its type; thus, if a variable is supposed to have various
types depending on the context, set to CONF_TYPE_STR and use conf_conv(). For
OPT_TYPE_INT and OPT_TYPE_UINT, the conversion of a given value recognizes
the C-style prefixes; numbers starting with O are treated as octal, and those with 0x or
0X are treated as hexadecimal.

The de fval member specifies a default value for a variable that is used when a config-
uration file dose not set that variable to a value. It cannot be a null pointer but an empty
string. Note that conf_preset() that accepts a configuration description table does not
check if a default value has a proper form for the type of a variable.

See the commented-out example code given in the source file for more about a config-
uration description table.

5.1.2 Field Documentation
5.1.2.1 charx conf_t::defval

default value

5.1.2.2 int conf_t::type

type of variable

5.1.2.3 charx conf_t::var

section name and variable name

The documentation for this struct was generated from the following file:

e conf.h

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

Chapter 6

File Documentation

6.1 conf.c File Reference

Source for Configuration File Library (CEL).
#include <stddef.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include "cbl/assert.h"
#include "cbl/memory.h"
#include "cdsl/hash.h"
#include "cdsl/table.h"
#include "conf.h"

Include dependency graph for conf.c:

Data Structures

¢ struct valnode_t

18 File Documentation

Defines

* #define BUFLEN 80

* #define VALID_CHR(c) (isalpha(c) || isdigit(c) || (c) =="_")
Functions

* int() conf_preset (const conf_t xtab, int ctrl)

constructs a default set for configuration variables.

* size_t() conf_init (FILE «fp, int ctrl)

reads a configuration file and constructs the configuration data.

* const void * conf_conv (const char *val, int type)

converts a string based on a type.

* const void *() conf_get (const char *var)

retrieves a value with a section/variable name.

* int() conf_getbool (const char *var, int errval)

retrieves a boolean value with a section/variable name.

* long() conf_getint (const char xvar, long errval)

retrieves an integral value with a section/variable name.

* unsigned long() conf_getuint (const char xvar, unsigned long errval)

retrieves an unsigned integral value with a section/variable name.

* double() conf_getreal (const char *var, double errval)

retrieves a real value with a section/variable name.

* const char *() conf_getstr (const char xvar)

retrieves a string with a section/variable name.

* int() conf_set (const char *secvar, const char xvalue)

inserts or replaces a value associated with a variable.

* int() conf_section (const char *sec)

sets the current section.

¢ void() conf_free (void)

deallocates the stroage for the configuration data.

¢ void() conf_hashreset (void)

resets the hash table using hash_reset().

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.1 conf.c File Reference 19

¢ int() conf_errcode (void)

returns an error code.

¢ const char *() conf_errstr (int code)

returns an error message.

6.1.1 Detailed Description

Source for Configuration File Library (CEL).

6.1.2 Function Documentation
6.1.2.1 const voidx conf_conv (const char x val, int type)

converts a string based on a type.

conf_conv() converts a string to an integer or floating-point number as requested. type
should be CONF_TYPE_BOOL (which recognizes some forms of boolean values),
CONF_TYPE_INT (which indicates conversion to signed long int), CONT_TYPE_ -
UINT (conversion to unsigned long int), CONF_TYPE_REAL (conversion to double)
or CONF_TYPE_STR (no conversion necessary). The expected forms for CONF_ -
TYPE_INT, CONF_TYPE_UINT and CONF_TYPE_REAL are respectively those for
strtol(), strtoul() and strtod(). CONF_TYPE_BOOL gives | for a string starting with
t,°T,’y’, ’Y’, ’1” and O for others. conf_conv() returns a pointer to the storage that
contains the converted value (an integer, floating-point number or string) and its caller
(user code) has to convert the pointer properly (to const int *, const long *, const un-
signed long *, const double * and const char x) before use. If the conversion fails,
conf_conv() returns a null pointer and sets CONF_ERR_TYPE as an error code.

Warning:

A subsequent call to conf_getbool(), conf_getint(), conf_getuint() and conf_-
getreal() may overwrite the contents of the buffer pointed by the resulting pointer.
Similarly, a subsequent call to conf_conv() and conf_get() may overwrite the con-
tents of the buffer pointed by the resulting pointer unless the type is CONF_ -
TYPE_STR.

Parameters:

«— val string to convert

«— type type based on which conversion performed

Returns:

pointer to storage that contains result or null pointer

Return values:

non-null pointer to conversion result

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

20 File Documentation

NULL conversion failure

Here is the caller graph for this function:

6.1.2.2 int() conf_errcode (void)

returns an error code.

Every function in this library sets the internal error variable as it performs its operation.
Unlike errno provided by <errno.h>, the error variable of this library is set to CONF_ —
ERR_OK before starting an operation, thus a user code need not to clear it before calling
a conf_ function.

When using a function returning an error code (of the int type), the returned value is
the same as what conf_errcode() will return if there is no intervening call to a conf_
function between them. When using a function returning a pointer, the only way to get
what the error has been occurred is to use conf_errcode().

The following code fragment shows an example for how to use conf_errcode() and
conf_errstr():

fp = fopen(conf, "r");
if (!'fp)
fprintf (stderr, "%$s:%s: %s\n", prg, conf, conf_errstr (CONF_ERR_FILE));
line = conf_init (fp, CONF_OPT_CASE | CONF_OPT_ESC);
if (line != 0)
fprintf (stderr, "%$s:%s:%lu: %$s\n", prg, conf, line, conf_errstr (conf_errcode()));

Possible exceptions: none

Unchecked errors: none

Returns:

current error code

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.1 conf.c File Reference 21

6.1.2.3 const charx() conf_errstr (int code)

returns an error message.
conf_errstr() returns an error message for a given error code.
Possible exceptions: assert_exceptfail

Unchecked errors: none

Parameters:

«— code error code for which error message returned

Returns:

€1Tor message

6.1.2.4 void() conf_free (void)

deallocates the stroage for the configuration data.

conf_free() deallocates storages for the configuration data. After conf_free() invoked,
other conf_ functions should not be called without an intervening call to conf_preset()
or conf_init().

Possible exceptions: assert_exceptfail

Unchecked errors: none

Warning:

conf_free() does not reset the hash table used internally since it may be used by
other parts of the program. Invoking hash_reset() through conf_hashreset() before
program termination cleans up storages occupied by the table.

Returns:

nothing

6.1.2.5 const voidx() conf_get (const char x var)

retrieves a value with a section/variable name.
conf_get() retrieves a value with a section/variable name.

In a program (e.g., when using conf_get()), variables can be referred to using one of
the following forms:

variable
. variable
section . variable

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

22 File Documentation

where whitespaces are optional before and after section and variable names. The first
form refers to a variable belonging to the "current" section; the current section can be
set by invoking conf_section(). The second form refers to a variable belonging to the
global section. The last form refers to a variable belonging to a specific section.

Warning:

A subsequent call to conf_conv() and conf_get() may overwrite the contents of
the buffer pointed by the resulting pointer unless the type is CONF_TYPE_STR.
Similarly, a subsequent call to conf_getbool(), conf_getint(), conf_getuint() and
conf_getreal() may overwrite the contents of the buffer pointed by the resulting
pointer.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

«— var section/variable name

Returns:

pointer to storage that contains value or null pointer

Return values:

non-null value retrieved
NULL failure

Here is the call graph for this function:

6.1.2.6 int() conf_getbool (const char * var, int errval)

retrieves a boolean value with a section/variable name.

conf_getbool() retrieves a boolean value with a section/variable name. Every value for
a variable is stored in a string form, and conf_getbool() converts it to a boolean value;
the result is 1 (indicating true) if the string starts with ’t’, >T", ’y’, Y or "1’ ignoring
any leading spaces and O (indicating false) otherwise. If there is no variable with the
given name or the preset type of the variable is not CONF_TYPE_BOOL, the value of
errval is returned.

For how to refer to variables in a program, see conf_get().
Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.1 conf.c File Reference 23

Parameters:

< var section/variable name

<« errval value returned as error
Returns:

converted result or errval

Here is the call graph for this function:

6.1.2.7 long() conf_getint (const char * var, long errval)

retrieves an integral value with a section/variable name.

conf_getint() retrieves an integral value with a section/variable name. Every value for
a variable is stored in a string form, and conf_getint() converts it to an integer using
strtol() declared in <stdlib.h>. If there is no variable with the given name or the preset
type of the variable is not CONF_TYPE_ INT, the value of errval is returned.

For how to refer to variables in a program, see conf_get().
Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

<« var section/variable name

< errval value returned as error
Returns:

converted result or errval

Here is the call graph for this function:

6.1.2.8 double() conf_getreal (const char x var, double errval)

retrieves a real value with a section/variable name.

conf_getreal() retrieves a real value with a section/variable name. Every value for a
variable is stored in a string form, and conf_getreal() converts it to a floating-point num-
ber using strtod() declared in <stdlib.h>. If there is no variable with the given name

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

24 File Documentation

or the preset type of the variable is not CONF_TYPE_REAL, the value of errval is
returned; HUGE_ VAL defined <math.h> would be a nice choice for errval.

For how to refer to variables in a program, see conf_get().
Possible exceptions: assert_exceptfail, mem_exceptfail
Unchecked errors: none

Parameters:

« var section/variable name
<« errval value returned as error

Returns:

converted result or errval

Here is the call graph for this function:

6.1.2.9 const charx() conf_getstr (const char * var)

retrieves a string with a section/variable name.

conf_getstr() retrieves a string with a section/variable name. Every value for a variable
is stored in a string form, thus conf_getstr() performs no conversion. If there is no
variable with the given name or the preset type of the variable is not CONF_TYPE_ -
STR, a null pointer is returned.

For how to refer to variables in a program, see conf_get().
Possible exceptions: assert_exceptfail, mem_exceptfail
Unchecked errors: none
Parameters:

« var section/variable name
Returns:

string or null pointer

Return values:

non-null string retrieved
NULL failure

Here is the call graph for this function:

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.1 conf.c File Reference 25

6.1.2.10 unsigned long() conf_getuint (const char * var, unsigned long errval)

retrieves an unsigned integral value with a section/variable name.

conf_getuint() retrieves an unsigned integral value with a section/variable name. Every
value for a variable is stored in a string form, and conf_getuint() converts it to an
unsigned integer using strtoul() declared in <stdlib.h>. If there is no variable with the
given name or the preset type of the variable is not CONF_TYPE_UINT, the value of
errval is returned.

For how to refer to variables in a program, see conf_get().
Possible exceptions: assert_exceptfail, mem_exceptfail
Unchecked errors: none

Parameters:

< var section/variable name
< errval value returned as error

Returns:

converted result or errval

Here is the call graph for this function:

6.1.2.11 void() conf_hashreset (void)

resets the hash table using hash_reset().

conf_hashreset() simply calls hash_reset() to reset the hash table. As explained in
conf_free(), conf_free() does not invoke hash_reset() because the single hash table may
be used by other parts of a user program. Since requiring a reference to hash_reset()
when using the Configuration File Library is inconsistent and inconvenient (e.g., a user
code is obliged to include "hash.h"), conf_hashreset() is provided as a wrapper for
hash_reset().

Warning:

Do not forget that the effect on the hash table caused by conf_hashreset() is not
limited to eliminating only what conf_ functions adds to the table; it completely
cleans up the entire hash table.

Possible exceptions: none
Unchecked errors: none
Returns:

nothing

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

26 File Documentation

6.1.2.12 size_t() conf_init (FILE * fp, int ctrl)

reads a configuration file and constructs the configuration data.

conf_init() reads a configuration file and constructs the configuration data by analyzing
the file. For how conf_init() interacts with conf_preset(), see conf_preset().

The default behavior of the library is that names are not case-insensitive and that escape
sequences are not recognized. This behavior can be changed by setting the CONF_ -
OPT_CASE and CONF_OPT_ESC bits in ctr1, respectively; see also conf_preset().

If the control mode that can be set through ct r1 has been already set by conf_preset(),
conf_init() ignores ctrl.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: invalid file pointer given for £p

Parameters:

«— fp file pointer from which configuration data read

«— ctrl control code

Returns:

success/failure indicator

Return values:

0 success

positive line number on which error occurred

Todo

Improvements are possible and planned:

¢ some adjustment on arguments to table_new() is necessary.

6.1.2.13 int() conf_preset (const conf_t « tab, int ctrl)

constructs a default set for configuration variables.

A user program can specify the default set of configuration variables (including sec-
tions to which they belong and their types) with conf_preset(). The table (an array,
in fact) containing necessary information have the conf_t type and called a "con-
figuration description table." For a detailed explanation and examples, see conf_t.
conf_preset(), if invoked, has to be called before conf_init(). conf_init() is not neces-
sarily invoked if conf_preset() is used.

If invoked, conf_preset() remembers names that need to be recognized as sections and
variables, types of variables, and their default values. When conf_init() processes a
configuration file, a sections or variable that is not given via conf_preset() is considered
an error. Using conf_preset() and a configuration description table is the only way to
let variables have other types than CONF_TYPE_STR (string type).

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.1 conf.c File Reference 27

If not invoked, conf_init() accepts any section and variable name (if they have a valid
form) and all of variables are assumed to be of CONF_TYPE_ STR type.

conf_preset() also takes ctr1 for controling some behaviors of the library, especially
handling section/variable names and values. If the CONF_OPT_CASE bit is set in
ctrl (that is, CONF_OPT_CASE & ctrl is not 0), section and variable names are
case-sensitive. If the CONF_OPT_ESC bit is set in ctrl, some forms of escape se-
quences are supported in a quoted value. The default behavior is that section and
variable names are case-insensitive and no escape sequences are supported.

Warning:

conf_preset() does not warn that a default value for a variable does not have an
expected form for the variable’s type. It is to be treated as an error when retrieving
the value by conf_get() or similar functions.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

«— tab configuration description table

<« ctrl control code

Returns:

success/failure indicator

Return values:

CONF_ERR _OK success

others failure

Todo

Improvements are possible and planned:
* some adjustment on arguments to table_new() is necessary;

* considering changes to the format of a configuration file as a program to
accept it is upgraded, making it a recoverable error to encounter a non-preset
section or variable name would be useful; this enables an old version of the
program to accept a new configuration file with diagnostics.

6.1.2.14 int() conf_section (const char * sec)

sets the current section.

conf_section() sets the current section to a given section. The global section can be
set as the current section by giving an empty string "" to conf_section(). conf_section()
affects how conf_get(), conf_getbool(), conf_getint(), confgetuint(), confgetreal(), con-
fgetstr() and conf_set() work.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

28 File Documentation

Parameters:

«— sec section name to set as current section

Returns:

success/failure indicator

Return values:

CONF_ERR _OK success

others failure

6.1.2.15 int() conf_set (const char * secvar, const char * value)

inserts or replaces a value associated with a variable.

conf_set() inserts or replaces a value associated with a variable. If conf_preset() has
been invoked, conf_set() is able to only replace a value associated with an existing
variable, which means an error code is returned when a user tries to insert a new vari-
able and its value (possibly with a new section). conf_set() is allowed to insert a new
variable-value pair otherwise.

For how to refer to variables in a program, see conf_get().

Warning:

When conf_preset() invoked, conf_set() does not check if a given value is ap-
propriate to the preset type of a variable. That mismatch is to be detected when
conf_get() or similar functions called later for the variable.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:
« secvar section/variable name
«— value value to store
Returns:

success/failure indicator

Return values:
CONF_ERR OK success
others failure

Todo

Improvements are possible and planned:

* some adjustment on arguments to table_new() is necessary.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.2 conf.h File Reference 29

6.2 conf.h File Reference

Header for Configuration File Library (CEL).
This graph shows which files directly or indirectly include this file:

Data Structures

¢ struct conf _t

represents an element of a configuration description table.

Enumerations

e enum {

CONF_TYPE_NO, CONF_TYPE BOOL, CONF_TYPE_INT, CONF_-
TYPE_UINT,

CONF_TYPE_REAL, CONF_TYPE_STR }

defines enum constants for types of values.

e enum {
CONF_ERR_OK, CONF_ERR_FILE, CONF_ERR_IO, CONF_ERR_SPACE,

CONF_ERR_CHAR, CONF_ERR_LINE, CONF_ERR_BSLASH, CONF_-
ERR_SEC,

CONF_ERR_VAR, CONF_ERR_TYPE, CONF_ERR_MAX }

defines enum constants for error codes.

e enum { CONF_OPT_CASE = 0x01, CONF_OPT_ESC = CONF_OPT_CASE
<<1}

defines masks for control options.

Functions
configuration initializing functions:

* int conf_preset (const conf_t *, int)

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

30 File Documentation

constructs a default set for configuration variables.

e size_t conf_init (FILE , int)

reads a configuration file and constructs the configuration data.

¢ void conf_free (void)

deallocates the stroage for the configuration data.

* void conf_hashreset (void)

resets the hash table using hash_reset().

configuration data-handling functions:

 const void * conf_conv (const char x*, int)

converts a string based on a type.

* const void * conf_get (const char)

retrieves a value with a section/variable name.

* int conf_getbool (const char x, int)

retrieves a boolean value with a section/variable name.

* long conf_getint (const char *, long)

retrieves an integral value with a section/variable name.

* unsigned long conf_getuint (const char *, unsigned long)

retrieves an unsigned integral value with a section/variable name.

* double conf_getreal (const char *, double)

retrieves a real value with a section/variable name.

* const char * conf_getstr (const char *)

retrieves a string with a section/variable name.

e int conf_set (const char *, const char x)

inserts or replaces a value associated with a variable.

* int conf_section (const char %)

sets the current section.

error handling functions:

e int conf_errcode (void)

returns an error code.

* const char * conf_errstr (int)

returns an error message.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.2 conf.h File Reference

31

6.2.1 Detailed Description

Header for Configuration File Library (CEL).

Documentation for Configuration File Library (CEL).

6.2.2 Enumeration Type Documentation
6.2.2.1 anonymous enum
defines enum constants for types of values.

Enumerator:

CONF_TYPE_BOOL has boolean (int) type
CONF_TYPE_INT has integer (long) type

CONF _TYPE _UINT has unsigned integer (unsigned long) type
CONF_TYPE_REAL has floating-point (double) type
CONF_TYPE_STR has string (char %) type

6.2.2.2 anonymous enum
defines enum constants for error codes.

Enumerator:

CONF_ERR_OK everything is okay
CONF_ERR_FILE file not found

CONF_ERR IO 1/O error occurred

CONF_ERR _SPACE space in section/variable name
CONF_ERR CHAR invalid character encountered
CONF_ERR_LINE invalid line encountered
CONF_ERR_BSLASH no following line for slicing
CONF_ERR_SEC section not found
CONF_ERR_VAR variable not found

CONF_ERR _TYPE data type mismatch

6.2.2.3 anonymous enum
defines masks for control options.

Enumerator:

CONF_OPT_CASE case-sensitive variable/section name
CONF_OPT_ESC supports escape sequence in quoted value

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

32 File Documentation

6.2.3 Function Documentation

6.2.3.1 const voidx conf_conv (const char * val, int type)

converts a string based on a type.

conf_conv() converts a string to an integer or floating-point number as requested. type
should be CONF_TYPE_BOOL (which recognizes some forms of boolean values),
CONF_TYPE_INT (which indicates conversion to signed long int), CONT_TYPE_ -
UINT (conversion to unsigned long int), CONF_TYPE_REAL (conversion to double)
or CONF_TYPE_STR (no conversion necessary). The expected forms for CONF_~
TYPE_INT, CONF_TYPE_UINT and CONF_TYPE_REAL are respectively those for
strtol(), strtoul() and strtod(). CONF_TYPE_BOOL gives 1 for a string starting with
t, T, ’y’, ’Y’, 1" and O for others. conf_conv() returns a pointer to the storage that
contains the converted value (an integer, floating-point number or string) and its caller
(user code) has to convert the pointer properly (to const int *, const long *, const un-
signed long *, const double * and const char x) before use. If the conversion fails,
conf_conv() returns a null pointer and sets CONF_ERR_TYPE as an error code.

Warning:

A subsequent call to conf_getbool(), conf_getint(), conf_getuint() and conf_-
getreal() may overwrite the contents of the buffer pointed by the resulting pointer.
Similarly, a subsequent call to conf_conv() and conf_get() may overwrite the con-
tents of the buffer pointed by the resulting pointer unless the type is CONF__—
TYPE_STR.

Parameters:

«— val string to convert

«— type type based on which conversion performed

Returns:

pointer to storage that contains result or null pointer

Return values:

non-null pointer to conversion result

NULL conversion failure

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.2 conf.h File Reference 33

Here is the caller graph for this function:

6.2.3.2 int conf_errcode (void)

returns an error code.

Every function in this library sets the internal error variable as it performs its operation.
Unlike errno provided by <errno.h>, the error variable of this library is set to CONF__~
ERR_OK before starting an operation, thus a user code need not to clear it before calling
a conf_ function.

When using a function returning an error code (of the int type), the returned value is
the same as what conf_errcode() will return if there is no intervening call to a conf_
function between them. When using a function returning a pointer, the only way to get
what the error has been occurred is to use conf_errcode().

The following code fragment shows an example for how to use conf_errcode() and
conf_errstr():

fp = fopen(conf, "r");
if (!'fp)
fprintf (stderr, "%$s:%s: %$s\n", prg, conf, conf_errstr (CONF_ERR_FILE));
line = conf_init (fp, CONF_OPT_CASE | CONF_OPT_ESC);
if (line != 0)
fprintf (stderr, "%$s:%s:%lu: %$s\n", prg, conf, line, conf_errstr(conf_errcode()));

Possible exceptions: none

Unchecked errors: none

Returns:

current error code

6.2.3.3 const charx conf_errstr (int code)

returns an error message.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

34 File Documentation

conf_errstr() returns an error message for a given error code.
Possible exceptions: assert_exceptfail

Unchecked errors: none

Parameters:

« code error code for which error message returned

Returns:

€rror message

6.2.3.4 void conf_free (void)

deallocates the stroage for the configuration data.

conf_free() deallocates storages for the configuration data. After conf_free() invoked,
other conf_ functions should not be called without an intervening call to conf_preset()
or conf_init().

Possible exceptions: assert_exceptfail

Unchecked errors: none
Warning:

conf_free() does not reset the hash table used internally since it may be used by
other parts of the program. Invoking hash_reset() through conf_hashreset() before
program termination cleans up storages occupied by the table.

Returns:

nothing

6.2.3.5 const voidx conf_get (const char * var)

retrieves a value with a section/variable name.
conf_get() retrieves a value with a section/variable name.

In a program (e.g., when using conf_get()), variables can be referred to using one of
the following forms:

variable
. variable
section . variable

where whitespaces are optional before and after section and variable names. The first
form refers to a variable belonging to the "current" section; the current section can be
set by invoking conf_section(). The second form refers to a variable belonging to the
global section. The last form refers to a variable belonging to a specific section.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.2 conf.h File Reference 35

Warning:

A subsequent call to conf_conv() and conf_get() may overwrite the contents of
the buffer pointed by the resulting pointer unless the type is CONF_TYPE_STR.
Similarly, a subsequent call to conf_getbool(), conf_getint(), conf_getuint() and
conf_getreal() may overwrite the contents of the buffer pointed by the resulting
pointer.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

<« var section/variable name

Returns:

pointer to storage that contains value or null pointer

Return values:

non-null value retrieved

NULL failure

Here is the call graph for this function:

6.2.3.6 int conf_getbool (const char * var, int errval)

retrieves a boolean value with a section/variable name.

conf_getbool() retrieves a boolean value with a section/variable name. Every value for
a variable is stored in a string form, and conf_getbool() converts it to a boolean value;
the result is 1 (indicating true) if the string starts with ’t’, *T", ’y’, ’Y” or "1’ ignoring
any leading spaces and O (indicating false) otherwise. If there is no variable with the
given name or the preset type of the variable is not CONF_TYPE_BOOL, the value of
errval is returned.

For how to refer to variables in a program, see conf_get().
Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

«— var section/variable name

<« errval value returned as error

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

36 File Documentation

Returns:

converted result or errval

Here is the call graph for this function:

6.2.3.7 long conf_getint (const char * var, long errval)

retrieves an integral value with a section/variable name.

conf_getint() retrieves an integral value with a section/variable name. Every value for
a variable is stored in a string form, and conf_getint() converts it to an integer using
strtol() declared in <stdlib.h>. If there is no variable with the given name or the preset
type of the variable is not CONF__TYPE_ INT, the value of errval is returned.

For how to refer to variables in a program, see conf_get().
Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

« var section/variable name

<« errval value returned as error

Returns:

converted result or errval

Here is the call graph for this function:

6.2.3.8 double conf_getreal (const char * var, double errval)

retrieves a real value with a section/variable name.

conf_getreal() retrieves a real value with a section/variable name. Every value for a
variable is stored in a string form, and conf_getreal() converts it to a floating-point num-
ber using strtod() declared in <stdlib.h>. If there is no variable with the given name
or the preset type of the variable is not CONF_TYPE_REAL, the value of errval is
returned; HUGE_ VAL defined <math.h> would be a nice choice for errval.

For how to refer to variables in a program, see conf_get().

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.2 conf.h File Reference 37

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

<« var section/variable name

« errval value returned as error

Returns:

converted result or errval

Here is the call graph for this function:

6.2.3.9 const charx conf_getstr (const char x var)

retrieves a string with a section/variable name.

conf_getstr() retrieves a string with a section/variable name. Every value for a variable
is stored in a string form, thus conf_getstr() performs no conversion. If there is no
variable with the given name or the preset type of the variable is not CONF_TYPE_ -
STR, a null pointer is returned.

For how to refer to variables in a program, see conf_get().
Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

<« var section/variable name

Returns:

string or null pointer

Return values:

non-null string retrieved
NULL failure

Here is the call graph for this function:

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

38 File Documentation

6.2.3.10 unsigned long conf_getuint (const char * var, unsigned long errval)

retrieves an unsigned integral value with a section/variable name.

conf_getuint() retrieves an unsigned integral value with a section/variable name. Every
value for a variable is stored in a string form, and conf_getuint() converts it to an
unsigned integer using strtoul() declared in <stdlib.h>. If there is no variable with the
given name or the preset type of the variable is not CONF_TYPE_UINT, the value of
errval is returned.

For how to refer to variables in a program, see conf_get().
Possible exceptions: assert_exceptfail, mem_exceptfail
Unchecked errors: none

Parameters:

«— var section/variable name
<« errval value returned as error

Returns:

converted result or errval

Here is the call graph for this function:

6.2.3.11 void conf_hashreset (void)

resets the hash table using hash_reset().

conf_hashreset() simply calls hash_reset() to reset the hash table. As explained in
conf_free(), conf_free() does not invoke hash_reset() because the single hash table may
be used by other parts of a user program. Since requiring a reference to hash_reset()
when using the Configuration File Library is inconsistent and inconvenient (e.g., a user
code is obliged to include "hash.h"), conf_hashreset() is provided as a wrapper for
hash_reset().

Warning:

Do not forget that the effect on the hash table caused by conf_hashreset() is not
limited to eliminating only what conf_ functions adds to the table; it completely
cleans up the entire hash table.

Possible exceptions: none
Unchecked errors: none
Returns:

nothing

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.2 conf.h File Reference 39

6.2.3.12 size_t conf_init (FILE * fp, int ctrl)

reads a configuration file and constructs the configuration data.

conf_init() reads a configuration file and constructs the configuration data by analyzing
the file. For how conf_init() interacts with conf_preset(), see conf_preset().

The default behavior of the library is that names are not case-insensitive and that escape
sequences are not recognized. This behavior can be changed by setting the CONF_ -
OPT_CASE and CONF_OPT_ESC bits in ctr1, respectively; see also conf_preset().

If the control mode that can be set through ct r1 has been already set by conf_preset(),
conf_init() ignores ctrl.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: invalid file pointer given for fp

Parameters:

«— fp file pointer from which configuration data read

« ctrl control code

Returns:

success/failure indicator

Return values:

0 success

positive line number on which error occurred

Todo

Improvements are possible and planned:

* some adjustment on arguments to table_new() is necessary.

6.2.3.13 int conf_preset (const conf_t * tab, int ctrl)

constructs a default set for configuration variables.

A user program can specify the default set of configuration variables (including sec-
tions to which they belong and their types) with conf_preset(). The table (an array,
in fact) containing necessary information have the conf_t type and called a "con-
figuration description table." For a detailed explanation and examples, see conf_t.
conf_preset(), if invoked, has to be called before conf_init(). conf_init() is not neces-
sarily invoked if conf_preset() is used.

If invoked, conf_preset() remembers names that need to be recognized as sections and
variables, types of variables, and their default values. When conf_init() processes a
configuration file, a sections or variable that is not given via conf_preset() is considered
an error. Using conf_preset() and a configuration description table is the only way to
let variables have other types than CONF_TYPE_STR (string type).

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

40 File Documentation

If not invoked, conf_init() accepts any section and variable name (if they have a valid
form) and all of variables are assumed to be of CONF_TYPE_STR type.

conf_preset() also takes ctrl for controling some behaviors of the library, especially
handling section/variable names and values. If the CONF_OPT_CASE bit is set in
ctrl (that is, CONF_OPT_CASE & ctrl is not 0), section and variable names are
case-sensitive. If the CONF_OPT_ESC bit is set in ctr1, some forms of escape se-
quences are supported in a quoted value. The default behavior is that section and
variable names are case-insensitive and no escape sequences are supported.

Warning:

conf_preset() does not warn that a default value for a variable does not have an
expected form for the variable’s type. It is to be treated as an error when retrieving
the value by conf_get() or similar functions.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:

«— tab configuration description table

« ctrl control code

Returns:

success/failure indicator

Return values:

CONF_ERR _OK success

others failure

Todo

Improvements are possible and planned:
¢ some adjustment on arguments to table_new() is necessary;

* considering changes to the format of a configuration file as a program to
accept it is upgraded, making it a recoverable error to encounter a non-preset
section or variable name would be useful; this enables an old version of the
program to accept a new configuration file with diagnostics.

6.2.3.14 int conf_section (const char x sec)

sets the current section.

conf_section() sets the current section to a given section. The global section can be
set as the current section by giving an empty string "" to conf_section(). conf_section()
affects how conf_get(), conf_getbool(), conf_getint(), confgetuint(), confgetreal(), con-
fgetstr() and conf_set() work.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

6.2 conf.h File Reference 41

Parameters:

«+— sec section name to set as current section

Returns:

success/failure indicator

Return values:

CONF_ERR _OK success

others failure

6.2.3.15 int conf_set (const char * secvar, const char x value)

inserts or replaces a value associated with a variable.

conf_set() inserts or replaces a value associated with a variable. If conf_preset() has
been invoked, conf_set() is able to only replace a value associated with an existing
variable, which means an error code is returned when a user tries to insert a new vari-
able and its value (possibly with a new section). conf_set() is allowed to insert a new
variable-value pair otherwise.

For how to refer to variables in a program, see conf_get().

Warning:

When conf_preset() invoked, conf_set() does not check if a given value is ap-
propriate to the preset type of a variable. That mismatch is to be detected when
conf_get() or similar functions called later for the variable.

Possible exceptions: assert_exceptfail, mem_exceptfail

Unchecked errors: none

Parameters:
< secvar section/variable name
«— value value to store
Returns:

success/failure indicator

Return values:
CONF_ERR OK success
others failure

Todo

Improvements are possible and planned:

* some adjustment on arguments to table_new() is necessary.

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

Index

conf.c, 17

conf_conv, 19
conf_errcode, 20
conf_errstr, 20
conf_free, 21
conf_get, 21
conf_getbool, 22
conf_getint, 23
conf_getreal, 23
conf_getstr, 24
conf_getuint, 24
conf_hashreset, 25
conf_init, 25
conf_preset, 26
conf_section, 27
conf_set, 28

conf.h, 29

CONF_ERR_BSLASH, 31
CONF_ERR_CHAR, 31
CONF_ERR_FILE, 31
CONF_ERR_IO, 31
CONF_ERR_LINE, 31
CONF_ERR_OK, 31
CONF_ERR_SEC, 31
CONF_ERR_SPACE, 31
CONF_ERR_TYPE, 31
CONF_ERR_VAR, 31
CONF_OPT_CASE, 31
CONF_OPT_ESC, 31
CONF_TYPE_BOOL, 31
CONF_TYPE_INT, 31
CONF_TYPE_REAL, 31
CONF_TYPE_STR, 31
CONF_TYPE_UINT, 31
conf_conv, 32
conf_errcode, 33
conf_errstr, 33
conf_free, 34

conf_get, 34
conf_getbool, 35
conf_getint, 36

conf_getreal, 36
conf_getstr, 37
conf_getuint, 37
conf_hashreset, 38
conf_init, 38
conf_preset, 39
conf_section, 40
conf _set, 41
CONF_ERR_BSLASH
conf.h, 31
CONF_ERR_CHAR
conf.h, 31
CONF_ERR_FILE
conf.h, 31
CONF_ERR_IO
conf.h, 31
CONF_ERR_LINE
conf.h, 31
CONF_ERR_OK
conf.h, 31
CONF_ERR_SEC
conf.h, 31
CONF_ERR_SPACE
conf.h, 31
CONF_ERR_TYPE
conf.h, 31
CONF_ERR_VAR
conf.h, 31
CONF_OPT_CASE
conf.h, 31
CONF_OPT_ESC
conf.h, 31
CONF_TYPE_BOOL
conf.h, 31
CONF_TYPE_INT
conf.h, 31
CONF_TYPE_REAL
conf.h, 31
CONF_TYPE_STR
conf.h, 31
CONF_TYPE_UINT

INDEX

43

conf.h, 31
conf_conv
conf.c, 19
conf.h, 32
conf_errcode
conf.c, 20
conf.h, 33
conf_errstr
conf.c, 20
conf.h, 33
conf free
conf.c, 21
conf.h, 34
conf_get
conf.c, 21
conf.h, 34
conf_getbool
conf.c, 22
conf.h, 35
conf_getint
conf.c, 23
conf.h, 36
conf_getreal
conf.c, 23
conf.h, 36
conf_getstr
conf.c, 24
conf.h, 37
conf_getuint
conf.c, 24
conf.h, 37
conf hashreset
conf.c, 25
conf.h, 38
conf_init
conf.c, 25
conf.h, 38
conf_preset
conf.c, 26
conf.h, 39
conf_section
conf.c, 27
conf.h, 40
conf_set
conf.c, 28
conf.h, 41
conf_t, 15
defval, 16
type, 16
var, 16

defval

type

var

conf_t, 16

conf_t, 16

conf t, 16

Generated on Mon Jan 24 01:13:09 2011 for The Configuration File Library by Doxygen

	C Environment Library: Configuration File Library
	Introduction
	Concepts

	How to Use The Library
	Configuration Description Tables
	Configuration Files

	Boilerplate Code
	Future Directions
	Recoverable Errors
	Minor Changes

	Contact Me
	Copyright

	Todo List
	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	conf_t Struct Reference
	Detailed Description
	Field Documentation
	defval
	type
	var

	File Documentation
	conf.c File Reference
	Detailed Description
	Function Documentation
	conf_conv
	conf_errcode
	conf_errstr
	conf_free
	conf_get
	conf_getbool
	conf_getint
	conf_getreal
	conf_getstr
	conf_getuint
	conf_hashreset
	conf_init
	conf_preset
	conf_section
	conf_set

	conf.h File Reference
	Detailed Description
	Enumeration Type Documentation
	"@0
	"@1
	"@2

	Function Documentation
	conf_conv
	conf_errcode
	conf_errstr
	conf_free
	conf_get
	conf_getbool
	conf_getint
	conf_getreal
	conf_getstr
	conf_getuint
	conf_hashreset
	conf_init
	conf_preset
	conf_section
	conf_set

